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FOREWORD

The National Curriculum Framework (NCF) 2005, recommends that children’s life at school
must be linked to their life outside the school. This principle marks a departure from the
legacy of bookish learning which continues to shape our system and causes a gap between the
school, home and community. The syllabi and textbooks developed on the basis of NCF signify
an attempt to implement this basic idea. They also attempt to discourage rote learning and the
maintenance of sharp boundaries between different subject areas. We hope these measures
will take us significantly further in the direction of a child-centred system of education
outlined in the national Policy on Education (1986).

The success of this effort depends on the steps that school principals and teachers will take
to encourage children to reflect on their own learning and to pursue imaginative activities and
questions. We must recognize that, given space, time and freedom, children generate new
knowledge by engaging with the information passed on to them by adults. Treating the prescribed
textbook as the sole basis of examination is one of the key reasons why other resources and
sites of learning are ignored. Inculcating creativity and initiative is possible if we perceive and
treat children as participants in learning, not as receivers of a fixed body of knowledge.

This aims imply considerable change is school routines and mode of functioning. Flexibility
in the daily time-table is as necessary as rigour in implementing the annual calendar so that the
required number of teaching days are actually devoted to teaching. The methods used for teaching
and evaluation will also determine how effective this textbook proves for making children’s
life at school a happy experience, rather then a source of stress or boredom. Syllabus designers
have tried to address the problem of curricular burden by restructuring and reorienting knowledge
at different stages with greater consideration for child psychology and the time available for
teaching. The textbook attempts to enhance this endeavour by giving higher priority and space
to opportunities for contemplation and wondering, discussion in small groups, and activities
requiring hands-on experience.

The National Council of Educational Research and Training (NCERT) appreciates the hard
work done by the textbook development committee responsible for this book. We wish to
thank the Chairperson of the advisory group in science and mathematics, Professor J.V. Narlikar
and the Chief Advisor for this book, Professor P. Sinclair of IGNOU, New Delhi for guiding the
work of this committee. Several teachers contributed to the development of this textbook; we



are grateful to their principals for making this possible. We are indebted to the institutions and
organizations which have generously permitted us to draw upon their resources, material and
personnel. We are especially grateful to the members of the National Monitoring Committee,
appointed by the Department of Secondary and Higher Education, Ministry of Human Resource
Development under the Chairpersonship of Professor Mrinal Miri and Professor G.P.
Deshpande, for their valuable time and contribution. As an organisation committed to systemic
reform and continuous improvement in the quality of its products, NCERT welcomes comments
and suggestions which will enable us to undertake further revision and refinement.

Director
New Delhi National Council of Educational
20 December 2005 Research and Training






RATIONALISATION OF CONTENT IN THE TEXTBOOKS

In view of the COVID-19 pandemic, it is imperative to reduce content load on students. The

National Education Policy 2020, also emphasises reducing the content load and providing

opportunities for experiential learning with creative mindset. In this background, the NCERT

has undertaken the exercise to rationalise the textbooks across all classes. Learning Outcomes

already developed by the NCERT across classes have been taken into consideration in this

exercise.

Contents of the textbooks have been rationalised in view of the following:

Overlapping with similar content included in other subject areas in the same class
Similar content included in the lower or higher class in the same subject
Difficulty level

Content, which is easily accessible to students without much interventions from teachers
and can be learned by children through self-learning or peer-learning

Content, which is irrelevant in the present context

This present edition, is a reformatted version after carrying out the changes given above.

vii
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2 NUMBER SYSTEMS
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CHAPTER 1

NUMBER SYSTEMS
I

1.1 Introduction

In your earlier classes, you have learnt about the number line and how to represent various types
of numbers on it (see Fig. 1.1).

1 1 1
< T T T

I D

1 1
T T

1 2 3

0

W=
I
0= 4+

Fig. 1.1 : The number line

Just imagine you start from zero and go on walking along this number line in the positive
direction. As far as your eyes can see, there are numbers, numbers and numbers!

Now suppose you start walking along the number line, and collecting some of the numbers.
Get a bag ready to store them!
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4 NUMBER SYSTEMS

You might begin with picking up only natural numbers like 1, 2,
3, and so on. You know that this list goes on for ever. (Why is this
true?) So, now your bag contains infinitely many natural numbers!
Recall that we denote this collection by the symbol N.

Now turn and walk all the way back, pick up zero and put it into
the bag. You now have the collection of whole numbers which is
denoted by the symbol W.

Now, stretching in front of you are many, many negative integers. Put all the negative integers
into your bag. What is your new collection? Recall that it is the collection of all integers, and
it is denoted by the symbol Z.

Z comes from the
German word
“zahlen”, which means

“to count”.

. . . 1 3
Are there some numbers still left on the line? Of course! There are numbers like > or

-2005 . .. .
006 If you put all such numbers also into the bag, it will now be the collection of

rational numbers.

cven
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6 NUMBER SYSTEMS

The collection of rational numbers is denoted by Q. ‘Rational’ comes from the word ‘ratio’,

and Q comes from the word ‘quotient’.
You may recall the definition of rational numbers:

A number ‘7’ is called a rational number, if it can be written in the form g , where p and ¢

are integers and g # 0. (Why do we insist that g # 0?)

Notice that all the numbers now in the bag can be written in the form % , where p and ¢ are
. . =25
integers and g # 0. For example, —25 can be written as - here p=-25 and g = 1. Therefore,

the rational numbers also include the natural numbers, whole numbers and integers.

You also know that the rational numbers do not have a unique representation in the form g ,

. 1 2 10 25 47
where p and g are integers and g # 0. For example, 2= 24"20 30 94’ and so on. These
are equivalent rational numbers (or fractions). However, when we say that g is a rational
number, or when we represent g on the number line, we assume that g # 0 and that p and g have
no common factors other than 1 (that is, p and g are co-prime). So, on the number line, among

. . . . 1 . 1
the infinitely many fractions equivalent to 5, Wwe will choose 5 to represent all of them.

Now, let us solve some examples about the different types of numbers, which you have

studied in earlier classes.

Example 1 : Are the following statements true or false? Give reasons for your answers.

(1) Every whole number is a natural number.

(i1) Every integer is a rational number.

(iii)  Every rational number is an integer.

Solution : (1) False, because zero is a whole number but not a natural number.

(i1) True, because every integer m can be expressed in the form ? ,and so it is a rational number.

... 3. .
(111)  False, because e not an integer.
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8 NUMBER SYSTEMS

Example 2 : Find five rational numbers between 1 and 2.
We can approach this problem in at least two ways.

Solution 1 : Recall that to find a rational number between » and s, you can add » and s and divide
. rt+s . 3.
the sum by 2, that is r_2s lies between r and s. So, 5 isa number between 1 and 2. You can
proceed in this manner to find four more rational numbers between 1 and 2. These four numbers
5 11 13 7
d

r — — > — an "
M g8 g

Solution 2 : The other option is to find all the five rational numbers in one step. Since we want

. . . . . 6
five numbers, we write 1 and 2 as rational numbers with denominator 5+ 1,1.e., 1=— and2=

6
12 7 8 9 10 11 .
o Then you can check that 56 6 and o are all rational numbers between 1 and 2. So,
74 35 11
—,—’—,—al’ld—,
the five numbers are 537’3 e

Remark : Notice that in Example 2, you were asked to find five rational numbers between 1
and 2. But, you must have realised that in fact there are infinitely many rational numbers between
I and 2. In general, there are infinitely many rational numbers between any two given

rational numbers.

Let us take a look at the number line again. Have you picked up all the numbers? Not, yet.
The fact is that there are infinitely many more numbers left on the number line! There are gaps
in between the places of the numbers you picked up, and not just one or two but infinitely many.
The amazing thing is that there are infinitely many numbers lying between any two of these gaps

too! @
So we are left with the following questions: 2! ?
1. What are the numbers, that are left on the number line, called?

2. How do we recognise them? That is, how do we distinguish them

from the rationals (rational numbers)? 2 R
These questions will be answered in the next section.
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10 NUMBER SYSTEMS

EXERCISE 1.1

1. Iszero arational number? Can you write it in the form g , where p and ¢ are integers and
q#0?

2. Find six rational numbers between 3 and 4.

3. Find five rational numbers between % and %.

4. State whether the following statements are true or false. Give reasons for your answers.
(1) Every natural number is a whole number.

(i1) Every integer is a whole number.

(ii1) Every rational number is a whole number.

1.2 Irrational Numbers

We saw, in the previous section, that there may be numbers on the number line that are not
rationals. In this section, we are going to investigate these numbers. So far, all the numbers you
have come across, are of the form £ where p and ¢ are integers and ¢ # 0. So, you may ask: are
there numbers which are not of this form? There are indeed such numbers.

The Pythagoreans in Greece, followers of the famous mathematician
and philosopher Pythagoras, were the first to discover the numbers
which were not rationals, around 400 BC. These numbers are called
irrational numbers (irrationals), because they cannot be written
in the form of a ratio of integers. There are many myths surrounding

the discovery of irrational numbers by the Pythagorean, Hippacus

of Croton. In all the myths, Hippacus has an unfortunate end, either Pythagoras

for discovering that 2 is irrational or for disclosing the secret (569 BCFI?‘;‘? BCE)
ig. 1.

about 2 to people outside the secret Pythagorean sect!

Let us formally define these numbers.
A number ‘s’ is called irrational, if it cannot be written in the form g , where p and g are
integers and g # 0.
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You already know that there are infinitely many rationals. It turns out that there are infinitely
many irrational numbers too. Some examples are:

V2. 3. 15, 7, 0.10110111011110...

Remark : Recall that when we use the symbol ./, we assume that it is the positive square
root of the number. So /4 = 2, though both 2 and -2 are square roots of 4.

Some of the irrational numbers listed above are familiar to you. For example, you have
already come across many of the square roots listed above and the number 7.

The Pythagoreans proved that /7 is irrational. Later in approximately 425 BC, Theodorus
of Cyrene showed that /3, /5, V6, /7, V10, V11, V12, /13, /14, /15 and /17 are also irrationals.
Proofs of irrationality of /7 , /3, /5 , etc., shall be discussed in Class X. As tom, it was known
to various cultures for thousands of years, it was proved to be irrational by Lambert and Legendre
only in the late 1700s. In the next section, we will discuss why 0.10110111011110... and 7w are
irrational. '

Let us return to the questions raised at the end of the previous
section. Remember the bag of rational numbers. If we now put all
irrational numbers into the bag, will there be any number left on

the number line? The answer is no! It turns out that the collection
of all rational numbers and irrational numbers together make up
what we call the collection of real numbers,
which is denoted by R. Therefore, a real number is either rational or irrational. So, we can say
that every real number is represented by a unique point on the number line. Also, every
point on the number line represents a unique real number. This is why we call the number

line, the real number line.

In the 1870s two German mathematicians, Cantor and
Dedekind, showed that : Corresponding to every real
number, there is a point on the real number line, and
corresponding to every point on the number line, there
exists a unique real number.

R. Dedekind (1831-1916) s 45 1915
Fig. 1.4 . Cantor ( -

Fig. 1.5
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Let us see how we can locate some of the irrational numbers on the number line.

Example 3 : Locate <2 on the number line.

. : . . ) B
Solution : It is easy to see how the Greeks might have discovered /2 . Consider ‘ 2
asquare OABC, with each side 1 unit in length (see Fig. 1.6). Then you can see by oy
the Pythagoras theorem that OB = /12 + 12 = /2. How do we represent +/2 on Fig. 1.6

the number line? This is easy. Transfer Fig. 1.6 onto the number line making sure
that the vertex O coincides with zero (see Fig. 1.7).

C B
I\
V2 1 2
t t +—t ] A t
3 2 71%0 AP 2 3
Fig. 1.7

We have just seen that OB = /7 . Using a compass with centre O and radius OB, draw an arc
intersecting the number line at the point P. Then P corresponds to /2 on the number line.

Example 4 : Locate /3 on the number line.

Solution : Let us return to Fig. 1.7.

D
J3 AN
Iy 3
v\
¥4
3 2 1o APQ 3
Fig. 1.8

Construct BD of unit length perpendicular to OB (as in Fig. 1.8). Then using the Pythagoras

theorem, we see that OD = ,/(\E )2 +1> =+/3 Using a compass, with centre O and radius OD,

draw an arc which intersects the number line at the point Q. Then Q corresponds to /3 .
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In the same way, you can locate ./, for any positive integer n, after \/n —1 has been located.

EXERCISE 1.2
1. State whether the following statements are true or false. Justify your answers.
(1) Every irrational number is a real number.
(i1) Every point on the number line is of the form /m , where m is a natural number.
(i11)  Every real number is an irrational number.

2. Are the square roots of all positive integers irrational? If not, give an example of the

square root of a number that is a rational number.
3. Show how ./5 can be represented on the number line.

4. Classroom activity (Constructing the ‘square root

spiral’) : Take a large sheet of paper and construct the ‘square ! P:

root spiral’ in the following fashion. Start with a point O and !
draw a line segment OP, of unit length. Draw a line segment P
P P, perpendicular to OP, of unit length (see Fig. 1.9). Now H ]

draw a line segment P P_ perpendicular to OP,. Thendraw a  Fig. 1.9: Constructing
line segment P_P, perpendicular to OP.. Continuing in this Square root spiral
manner, you can get the line segmentP__ P_by

drawing a line segment of unit length perpendicular to OP__ . In this manner, you will

have created the points P, P_,...., P ,... ., and joined them to create a beautiful spiral
depicting V2, /3, V4, ...

1.3 Real Numbers and their Decimal Expansions

In this section, we are going to study rational and irrational numbers from a different point of
view. We will look at the decimal expansions of real numbers and see if we can use the expansions
to distinguish between rationals and irrationals. We will also explain how to visualise the
representation of real numbers on the number line using their decimal expansions. Since rationals

10 7 1

are more familiar to us, let us start with them. Let us take three examples : R

Pay special attention to the remainders and see if you can find any pattern.
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Example 5 : Find the decimal expansions of ?

Solution :

3[10
9

10
9

10
9

10
9
1

3.333..

0.875

7.0
64

60
56

40
40

0

7
,gan

d

1
7

0.142857...

1.0
7
30
28
20
14
60
56
40
35
50
49
1

Remainders: 1,1, 1, 1, 1...Remainders : 6,4,0 Remainders:3,2,6,4,5, 1,

Divisor : 3

What have you noticed? You should have noticed at least three things:

Divisor : 8

3,2,6,4,5,1,...

Divisor : 7

(1) The remainders either become 0 after a certain stage, or start repeating themselves.

.. . . ) . . .. . 10
(i1) The number of entries in the repeating string of remainders is less than the divisor (in 3
one number repeats itself and the divisor is 3, in 7 there are six entries 326451 in the
repeating string of remainders and 7 is the divisor).

(ii1) If the remainders repeat, then we get a repeating block of digits in the quotient
(for 3 3 repeats in the quotient and for =, we get the repeating block 142857 in the

quotient).
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Although we have noticed this pattern using only the examples above, it is true for all rationals
of the form g (¢ # 0). On division of p by ¢, two main things happen — either the remainder
becomes zero or never becomes zero and we get a repeating string of remainders. Let us look
at each case separately.

Case (i) : The remainder becomes zero

7 . .
In the example of g e found that the remainder becomes zero after some steps and the decimal

. 7 1 63
expansion of e 0.875. Other examples are 5= 0.5, g(g) = 2.556. In all these cases, the

decimal expansion terminates or ends after a finite number of steps. We call the decimal
expansion of such numbers terminating.

Case (ii) : The remainder never becomes zero

10 1 . : . .
In the examples of 3 and 7, we notice that the remainders repeat after a certain stage forcing

the decimal expansion to go on for ever. In other words, we have a repeating block of digits in

. . . o . 10
the quotient. We say that this expansion is non-terminating recurring. For example, 3= 3.3333...

and % = 0.142857142857142857...

. . . 10 . .. = e
The usual way of showing that 3 repeats in the quotient of 50 to write it as 3.3. Similarly,

. . . . . 1 .1
since the block of digits 142857 repeats in the quotient of =, we write 7 a8 0142857 » where
the bar above the digits indicates the block of digits that repeats. Also 3.57272... can be written

as 3.572. So, all these examples give us non-terminating recurring (repeating) decimal
expansions.

Thus, we see that the decimal expansion of rational numbers have only two choices: either they
are terminating or non-terminating recurring.

Now suppose, on the other hand, on your walk on the number line, you come across a number
like 3.142678 whose decimal expansion is terminating or a number like 1.272727... that s,

1.27 , whose decimal expansion is non-terminating recurring, can you conclude that it is a rational
number? The answer is yes!
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We will not prove it but illustrate this fact with a few examples. The terminating cases are easy.
Example 6 : Show that 3.142678 is a rational number. In other words, express 3.142678 in the
form g , where p and ¢ are integers and g # 0.

3142678
1000000

Solution : We have 3.142678 = » and hence is a rational number.

Now, let us consider the case when the decimal expansion is non-terminating recurring.

Example 7 : Show that 0.3333... = 03 can be expressed in the form g, where p and ¢ are
integers and g # 0.

Solution : Since we do not know what 03 is, let us call it ‘x” and so
x=0.3333...

Now here is where the trick comes in. Look at
10 x=10 % (0.333...)=3.333...

Now, 3.3333... = 3 +x, since x = 0.3333...
Therefore, 10x=3+x
Solving for x, we get

1
Ox=3,1e,x=—
X ,Le., X 3

Example 8 : Show that 1.272727... = 1.27 can be expressed in the form g, where p and g are

integers and g # 0.
Solution : Let x = 1.272727... Since two digits are repeating, we multiply x by 100 to get
100 x = 127.2727...

So, 100 x =126 + 1.272727... =126 + x
Therefore, 100 x —x = 126, i.e., 99 x =126

. 126 14

ie., X = =

99 11
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14 _
You can check the reverse that T 1.27.

Example 9 : Show that 0.2353535... = 0.235 can be expressed in the form g , where p and ¢

are integers and g # 0.

Solution : Letx = 0.235. Over here, note that 2 does not repeat, but the block 35 repeats. Since
two digits are repeating, we multiply x by 100 to get

100 x = 23.53535...

So, 100 x = 23.3 + 0.23535...=233 +x
Therefore, 99 x =233

- BB 23
ie., 99 x = o » which gives x 990

233 —
You can also check the reverse that 390 0.235.

So, every number with a non-terminating recurring decimal expansion can be expressed in the

form 5 (g #0), where p and g are integers. Let us summarise our results in the following form

The decimal expansion of a rational number is either terminating or non-terminating
recurring. Moreover, a number whose decimal expansion is terminating or non-terminating

recurring is rational.

So, now we know what the decimal expansion of a rational number can be. What about the
decimal expansion of irrational numbers? Because of the property above, we can conclude that

their decimal expansions are non-terminating non-recurring.
So, the property for irrational numbers, similar to the property stated above for rational numbers,
1s

The decimal expansion of an irrational number is non-terminating non-recurring. Moreover,
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a number whose decimal expansion is non-terminating non-recurring is irrational.

Recall s =0.10110111011110... from the previous section. Notice that it is non-terminating
and non-recurring. Therefore, from the property above, it is irrational. Moreover, notice that
you can generate infinitely many irrationals similar to s.

What about the famous irrationals /2 and n? Here are their decimal expansions up to a certain
stage.

J2 = 1.4142135623730950488016887242096...
n = 3.14159265358979323846264338327950...
(Note that, we often take % as an approximate value for rt, but T # % )

Over the years, mathematicians have developed various techniques to produce more and more
digits in the decimal expansions of irrational numbers. For example, you might have learnt to
find digits in the decimal expansion of /2 by the division method. Interestingly, in the Sulbasutras
(rules of chord), a mathematical treatise of the Vedic period (800 BC - 500 BC), you find an
approximation of /> as follows:

J2 = 1+l+[lxlj—[ixlxlj=1.4l42156
3 4 3 34 4 3
Notice that it is the same as the one given above for the first five decimal places. The history of
the hunt for digits in the decimal expansion of & is very interesting.

The Greek genius Archimedes was the first to compute digits in
the decimal expansion of n. He showed 3.140845 < &t <
3.142857. Aryabhatta (476 — 550 C.E.), the great Indian
mathematician and astronomer, found the value of = correct to
four decimal places (3.1416). Using high speed computers and
advanced algorithms, m has been computed to over 1.24 trillion, ... . . (287 BCE - 212 BCE)
decimal places! Fig. 1.10

Now, let us see how to obtain irrational numbers. . )
Example 10 : Find an irrlational number between - and -
Solution : We saw that — = 0142857, So, you can easily calculate % =0.285714.

) ) ) 1 2 ) ) )
To find an irrational number between - and = we find a number which is
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non-terminating non-recurring lying between them. Of course, you can find infinitely many
such numbers.

An example of such a number is 0.150150015000150000...

EXERCISE 1.3

1. Write the following in decimal form and say what kind of decimal expansion each

has :
(i) = (ii) = (iii) 4
100 11 8
. 3 2, . 329
(iv) R\ 1 W) 00
[ — : : : 2 3 45
2. You know that - = 0142857 Can you predict what the decimal expansions of IIEIRIEL

g are, without actually doing the long division? If so, how?
[Hint : Study the remainders while finding the value of % carefully.]
3. Express the following in the form % where p and g are integers and g # 0.
(1) o6 (i1) 047 (i) o001
4. Express0.99999.... in the form % .Are you surprised by your answer? With your teacher
and classmates discuss why the answer makes sense.

5. What can the maximum number of digits be in the repeating block of digits in the decimal
expansion of %? Perform the division to check your answer.

6. Look at several examples of rational numbers in the form % (g#0), wherepandgare
integers with no common factors other than 1 and having terminating decimal
representations (expansions). Can you guess what property g must satisfy?

7. Write three numbers whose decimal expansions are non-terminating non-recurring.
8. Findthree different irrational numbers between the rational numbers ? and %
9. Classify the following numbers as rational or irrational :

(i) v23 (i) 225 (iii) 0.3796

(iv) 7.478478... (v) 1.101001000100001...
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1.4 Operations on Real Numbers

You have learnt, in earlier classes, that rational numbers satisfy the commutative, associative
and distributive laws for addition and multiplication. Moreover, if we add, subtract, multiply or
divide (except by zero) two rational numbers, we still get a rational number (that is, rational
numbers are ‘closed’ with respect to addition, subtraction, multiplication and division). It turns
out that irrational numbers also satisfy the commutative, associative and distributive laws for
addition and multiplication. However, the sum, difference, quotients and products of irrati%;;\l
numbte_rs arle not always irrational. For example, (\/E) + (_JE) , (ﬁ) _ (ﬁ) , (\@)(ﬁ) and N5
are rationals.

Let us look at what happens when we add and multiply a rational number with an irrational
number. For example, /3 is irrational. What about2 + /3 and 2./3? Since /3 has a non-
terminating non-recurring decimal expansion, the same is true for 2 + \/3 and 24/3 . Therefore,
both 2 + /3 and 24/3 are also irrational numbers.

Example 11 : Check whether 7./5, l,ﬁ + 21,7 — 2 are irrational numbers or not.
g 5

Solution : /5 =2.236..., /2 =1.4142..., t = 3.1415...

7 7~/5 7~/5
Then 75 =15.652..., ¢ = fs—{;g:Tf =3.1304...

V2 +21=224142..., n—-2=1.1415...

All these are non-terminating non-recurring decimals. So, all these are irrational numbers.

Now, let us see what generally happens if we add, subtract, multiply, divide, take square roots
and even nth roots of these irrational numbers, where n is any natural number. Let us look at
some examples.

Example 12 : Add 24/2 + 53 and /2 - 3/3.
Solution : (242 +5V3) + (V2 =348 = (242 +42) + (543 - 343)
= Q+1)V2+(5-3)/3=3/2+23
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Example 13 : Multiply 65 by 2./5.
Solution : 645 x 26 =6 x2x /5 x /5 =12 x5 =60

Example 14 : Divide 815 by 2/3.

SOIUtioN * 8415 = 23 = % 4

These examples may lead you to expect the following facts, which are true:
(1) Thesum or difference of a rational number and an irrational number is irrational.
(i1) The product or quotient of a non-zero rational number with an irrational number is irrational.

(ii)  If we add, subtract, multiply or divide two irrationals, the result may be rational or
irrational.

We now turn our attention to the operation of taking square roots of real numbers. Recall
that, if a is a natural number, then \/a =b means b2 =a and b > 0. The same definition can be
extended for positive real numbers.

Let a > 0be areal number. Then \/3 =b means b?=aand b > 0.

In Section 1.2, we saw how to represent /n for any positive integer n on the number line. We
now show how to find \/x forany given positive real number x geometrically. For example, let
us find it for x = 3.5, i.e., we find /3.5 geometrically.

A< 35— sB I C

Fig. 1.11

Mark the distance 3.5 units from a fixed point Aon a given line to obtain a point B such that AB
=3.5units (see Fig. 1.11). From B, mark a distance of 1 unit and mark the new pointas C. Find
the mid-point of AC and mark that point as O. Draw a semicircle with centre O and radius OC.
Draw a line perpendicular to AC passing through B and intersecting the semicircle at D. Then,

BD=+35.
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More generally, to find +/x , for any positive real number x, we
mark B so that AB = x units, and, as in Fig. 1.12, mark C so that BC
= 1 unit. Then, as we have done for the case x = 3.5, we find BD =
Jx (see Fig. 1.12). We can prove this result using the Pythagoras
Theorem.

A< x >B 1 C
Fig. 1.12

Notice that, in Fig. 1.12, A OBD is a right-angled triangle. Also, the radius of the circle is X%

units.

Therefore, OC=0D =0A= XTH units.

X+1

-1
Now, OB = X—[—}XT-

2

So, by the Pythagoras Theorem, we have

2 2
,_ 2 AR2 - x+1) _(x—lj _4x
BD?=0D?-0B —( > 5 X

This shows that BD = /x .

This construction gives us a visual, and geometric way of showing that /x exists for all real

numbers x > 0. If you want to know the position of \/x on the number line, then let us treat the
line BC as the number line, with B as zero, C as 1, and so on. Draw an arc with centre B and

radius BD, which intersects the number line in E (see Fig. 1.13). Then, E represents /x .




260:53»“)?260 35

Do DB § KD Bogy X H VXD EhEhmrecs AB = X
Qe dgdor B Hoks rhBoBod. 58k Heo 1.12 &° &rdns
Qsore BC = 1 comeS @i}é&)éom C othdd H8oBod. 853pd

X = 3.5 & 35D%ore (Do 1.169 Seod) fudo BD = VX %
EhofPotro. & endid Ko PEHER drrodo Tryoe AraTO.

A« X >B 1 C

S0 1.12

1
H00 1.12 9 550008 A OBD 2.8 eoas’s (@gbeo H0dm 58 gL X% O30,

0§ 0C=0D=0A= "= samoty

x+1) x-1
a33pH OB = X —[Tj =,

8308, 2EerioeR ‘z”ow(;oéo (Bse80, HdsH

2 2
BDZZODZ—OBZZ(X;Ll) —(X—_lj 2.

50 BD = /x @ &rd08.

& JoEa0 S5 X > 0 evamid (08 a5 Kot /x 600l e 08AOrP oD 208 BOSHTR0E.

éoaﬁ?géaa ) Jx @sm@& 8&1){:0552662626& BC % éospggéaam oo B ommyme C o 1 e Sndernhls.
B % Sosore, BD ag@bgoés 28 orHo ACHo&. & oo éoa?egéaazéa E 9o e go&00d.

(00 1.135r508) agpts E ode VX dedkob.




36 NUMBER SYSTEMS

We would like to now extend the idea of square roots to cube roots, fourth roots, and in
general nth roots, where n is a positive integer. Recall your understanding of square roots
and cube roots from earlier classes.

What is 3/g ? Well, we know it has to be some positive number whose cube is 8, and you must
have guessed 3/g =2. Let ustry $/243. Do you know some number b such that b® =243? The
answer is 3. Therefore, $/243 = 3.

From these examples, can you define /3 for a real number a > 0 and a positive integer n?

Let a > 0 be a real number and n be a positive integer. Then &/ = b, if b» = a and
b > 0. Note that the symbol “./~ * used in /2, /8, ¥/a, etc. is called the radical sign.

We now list some identities relating to square roots, which are useful in various ways.
You are already familiar with some of these from your earlier classes. The remaining ones
follow from the distributive law of multiplication over addition of real numbers, and from
the identity (x +y) (x —y) =x?—y?, for any real numbers x and y.

Letaand b be positive real numbers. Then

(i) ab=+avb (ii)\/%=%

(iii) (Va++b)(va-b)=a-b (iv) (a++b)(a-vb)=a’-b
() (Va+b) (Ve +Vd ) = ac +ad + vbe + vbd

(Vi)(x/5+\/5)2=a+2\/%+b

Let us look at some particular cases of these identities.

Example 15 : Simplify the following expressions:

M (5eV7)(2+5) (i) (5+5)(5-5)

(i) (VB+T) (iv) (VIL-7) (VI +7)
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b° = 243? Srpeido 30 Y243 =3

& BT8R0 TP NTatvy Kgyg éosp§ N $805» a> 0 e EVISEY éogpegéa 1/a %o QBggrosKeTe?

a>0 oH80 a8 RS Dogy B N a8 &S Feg Dowg 05808, adp Ya = b wond
b" = a %805 b >0 50203808, /2, ¥/8, Va BerHd FHS® 50D |/ 7 D& TEES HE)

[Sel:hite)

B0 BYPE HPFreroBd Ko0HoNI ERY) DTy SrdEy Achdre e orrro. (Eod
5% th HBE® §°YoB HBoD TENHI eI, HADID TN Hogge EE) Ho8eBoR Heses
Dgri TaHEw FoBAsH (X +Y) (X —Y) = X2 — Y2 &0 383 Srekss Aohno Toe TeebhdEntn. a8

X, Y en 3T PR Soggen.

a,ben HFD 5 KD Bogygen, w0

(i) “ab=+avb (ii)\/%=%

(iii) (vVa+b)(va-vb)=a-b (iv) (a+b)(a-b)=a"-b
(v) (Va +b) (e +d) = Vac + ad + Vhe + Vbd

(vi) (\/5+\/5)2=a+2\/%+b

S DBg DIy Achdre @) §°Q) @E%é Qodoyekd K)B%é’)mot’o.

&S 15 : (Bod $srdreds SrgEsosod.

(i) (5+7)(2+5) (ii) (5++5)(5-+5)

(iii) (V3 +7) (iv) (VIL-7) (VIL +7)
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Solution : (i) (5++7)(2+5)=10+5J5 + 27 +/35

(ii) (5++5)(5-5)=5 —(v5) =25-5=20

(ii)) (V3 + V7) = (V3) + 237 + (V) =3+ 221 +7 =10+ 2V21
(V) (VL1 —~7) (VIL + ¥7) = (VL) - (V7) =11-7=4

Remark : Note that ‘simplify” in the example above has been used to mean that the expression
should be written as the sum of a rational and an irrational number.

1
We end this section by considering the following problem. Look at N Can you tell where it

shows up on the number line? You know that it is irrational. May be it is easier to handle if the
denominator is a rational number. Let us see, if we can ‘rationalise’ the denominator, that is, to
make the denominator into a rational number. To do so, we need the identities involving square
roots. Let us see how.

L . 1
Example 16 : Rationalise the denominator of N

Solution : We want to write 2 asan equivalent expression in which the denominator is a

. L o1 2
rational number. We know that /7 ../ is rational. We also know that multiplying 7 by %

will give us an equivalent expression, since —= = 1. So, we put these two facts together to get
V2

11 2 V2
NN AN T

. - 1 . i
In this form, it is easy to locate 7z On the number line. It is half way between 0

and /2.
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56 (i) (5+7)(2+5) =10+ 55 + 247 + /35

(ii) (5+5)(5-+5)=5 ~(v5) =25-5=20

(iii) (V3 +7) =(VB) + 24347 + (V7) =3+ 2v21 + 7 =10 + 2421
(iv) (VA1 —7) (Vi1 +7) = (V1) ~(V7) =11-7=4
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1
Example 17 : Rationalise the denominator of YNE)

1
Solution : We use the Identity (iv) given earlier. Multiply and divide PYNE] by 2 - /3 to get

I 2-\3 2-3 &

X
243 2-3 4-3

5
Example 18 : Rationalise the denominator of B_5

Solution : Here we use the Identity (iii) given earlier.

5 s s 5(3+5) (s
50, BT -5 a5 35 {7)(\6“5)

. . . 1
Example 19 : Rationalise the denominator of 1302

Solution :

1 [7—3&)_7—3&_7—3&

1
= X = =
7+32 7+3J2 | 7-3J2] 49-18 31

So, when the denominator of an expression contains a term with a square root (or a number
under aradical sign), the process of converting it to an equivalent expression whose denominator

is a rational number is called rationalising the denominator.

EXERCISE 1.4

1. Classify the following numbers as rational or irrational:

(i) 2-+5 (if) (3 +23) - V23 (iii) %

(1v) % (v)2m
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1
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1 I 2-\3_2-43_
243 " 243 2-43 432\/_

5
soides 18 T 5 @) o) e8shoho Bahod.
PSS ¢ (111) & B8 DrdEy DAHHTR) GHTPACD

5 5 V35 (*/5“/5):(—75)(\5“5)

3-\5 T o5 a5 35

pv 1 4
amte 191 - Gt o)y ©55BA0 TAHoa.

S, LU (7-3V2)_7-32_7-32
T 7432 7+32 | 7-3V2 ] 49-18 31

S°aa§, 2.8 5ot B0 étéém@o (B> TP&ES 18 808s &) Dogyg) &8 Hed) EOA &z A
©EBHDH Hogy Ko FBorr Sr6)Erd8 HRPAOT (HIBCHD FFoed) esSBho BHero oerd.

@apvagzéo 1.4
1. &od Doz ©88B0H dogyen, E8haH Ddoggeore 5@&3050&.
. 3 N7
(i) 2-+5 (ii) (3+\/2_3)_\/E (iii) EN;l

(1v) % (v)2m
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2. Simplify each of the following expressions:

() (3+43)(2+v2) (i) (3+3)(3-+3)
(iii) (V5 +¥3) (iv) (V5 ~v2) (45 +2)
3. Recall, 7 is defined as the ratio of the circumference (say c) of a circle to its diameter

(say d). That is, T = 3 This seems to contradict the fact that 7 is irrational. How will

you resolve this contradiction?

4. Represent v/9.3 on the number line.

5. Rationalise the denominators of the following:

(i) (i) =75
1 1
i) o ™ F

1.5 Laws of Exponents for Real Numbers

Do you remember how to simplify the following?

1 177.17°= (i) (5%’ =
L 230 L 03
(iii) 7 (v) 7.9
Did you get these answers? They are as follows:
) 172.17°=17" (i1) (537" = 5"
23 .
(iii) = B (iv) 7°.9°=63°

To get these answers, you would have used the following laws of exponents, which you have
learnt in your earlier classes. (Here a, n and m are natural numbers. Remember, a is called the
base and m and » are the exponents.)

(i) a".a"=a""" @i1) (a™y'=a™

(i) S =a" " m> (iv) a@"b" = (ab)"
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2. (Bob $rres dr§ssosod.
(i) 3+V3)(2+V2) (i) (3+3)(3-+3)
(iii) (V5 +2) (iv) (V5 -v2) (V5 +2)

C

3. %% Dol T o5 a8 HI H06(c)8 T o (d) 8 Ko Y. ©dr T = v
20 T 0RO SEB0D Sogy @ FrEIH JOFOT Gob. & DHESH Db Jo° HEKHOIH?

4. 9.3 % Dogrg By D LrDo[08.
5. Soreky ©88HH0 BeHo&.

(i) (i) -
1 1
(i) T ™ F

1.5 %% Dogge Ewd) Hrarol dablren:

& (808 B der Gr§EBoTS Y Beode?

() 172.17° = (if) (52 =
(iii) 2 = (iv) 7°. 9% =
808 DFore & SETTEren i Fromeoe?
(i) 172175 =17 (if) (52)7 = 5'4
(ifi) S =25 (iv) 7. 9° = 63°

& Do Poerds, Hh & Bod SsKHed® 363)&26&& (Bod Frrzros AoHSred &HAPACTED.
(28 a, n 0B M oo Jee: Hogged &@oiﬁﬁso&. ‘@ Q 80 ©d m HBAW 1 o Hrearoseen @l
O, )

(1) am . an — am+n (11) (am)n — amn

(iii)

Z” =d" " m>n (iv) a"b™ = (ab)"




44 NUMBER SYSTEMS

. .. . 1 .
What is (a)*? Yes, it is 1! So you have learnt that (a)°= 1. So, using (iii), we can get =
We can now extend the laws to negative exponents too.

So, for example :

: B} 51 .
(i) 172177 =177 =1 (i) )7 =5"

... 2371
iii

=237 iv) 1797 =63)°

Suppose we want to do the following computations:

) 21 . Y
(1) 23.23 (i) (3}
1
T . [
(1ii) — (iv) 135 -175
75

How would we go about it? It turns out that we can extend the laws of exponents that we have
studied earlier, even when the base is a positive real number and the exponents are rational
numbers. (Later you will study that it can further to be extended when the exponents are real
numbers.) But before we state these laws, and to even make sense of these laws, we need to first

3
understand what, for example 42 is. So, we have some work to do!
We define #/, for a real number a > 0 as follows:

Let a > 0 be a real number and » a positive integer. Then i/, = b, if b = a and
b>0.

1 1
In the language of exponents, we define 2/, = a". So, in particular, 3/2 = 23 . There are now

3
two ways to look at 42 .
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1
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Therefore, we have the following definition:

Let a > 0 be a real number. Let m and » be integers such that m and » have no common
factors other than 1, and »> 0. Then,

We now have the following extended laws of exponents:
Let a> 0 be areal number and p and ¢ be rational numbers. Then, we have
(1) . a?=a"™ (i1) (a")? = a1

(iii) 9 _ a1 () abe = (aby

aq

You can now use these laws to answer the questions asked earlier.
LR oy
Example 20 : Simplify (i) 23 .23 (i1) [35 )

1
5 1 1
(i) — (1v) 13° -17°

75
Solution :

_21(2+1)é A
(1) 2°.23=20 3 =23=2'=2 (i) [35] =33

75 (1—1) 3= 2 Lo 1 1
(ii1) — =7 V=715 =75 (iv) 13°-17° =(13x17)° =221°
73
EXERCISE 1.5
1. Find: (1) 642 (i1) 325 (ii1) 125°
2. Find: (i) o (i) 3¢ (i) 16 (V) 1257
3. Simplify: (i) 2°.25 (i) (;) Gi) L (v) 2.

114
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P 0% (Bod dgharen Ganaw.
2.8 & TP Dogyg a > 0. mBasw nen 1, 85) 6 o 888 seSerosTe 89 Y Koggen L5
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m
n

a = (%)m =1 am
3050 AP Hr@roseos oDhEreod &8 (Bod dFore JOONHEY).
a> 036 a8 T89S vogy p HBAW g e ©EEBASH Soggen oS

G) @@ . a? = a" (i) (a”)7 = a

P
(ifi) & =a"" (iv) @b’ = (aby
a
BRPED 050 S0otH EAY EQ) (DFe D&rerared &8 5reeros AGDITOR ¢O@PN0L BIDW).

21 1\
aueeses 20 :mgééaoéo&. (i) 23.23 (11) [35J

1

T . Lo
(i) — (1v) 135 . 175
73
S

(i) 20.29=20 FJ=22=2'=2 (il £35] =35

1

L (1_1) 3-5 =2 ) LUt 1 1
(i) =77 V=715 =75 (1v) 135 -17° = (13 x17) = 221°
75
wgrgdo 1.5
1 1 1
1. (1) 64> (11) 323 (iil) 125 © Dended BHACI’.
3 2 3 -1
2. (i) o2 (i) 325 (iii) 16* (Iv) 1257 © Qenden BLPL08.

L2 Ly ...11% : [N
3. ‘@é&é@oéo&:(l) 23.25 (i1) [3—3) (i) — (iv) 72.82
114
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1.6 Summary

In this chapter, you have studied the following points:

1. Anumber ris called a rational number, if it can be written in the form g , where p and g are
integers and g # 0.
2. Anumber s is called a irrational number, if it cannot be written in the form % , where p and

q are integers and g # 0.

3. The decimal expansion of a rational number is either terminating or non-terminating
recurring. Moreover, a number whose decimal expansion is terminating or non-terminating
recurring is rational.

4. The decimal expansion of an irrational number is non-terminating non-recurring. Moreover,
anumber whose decimal expansion is non-terminating non-recurring is irrational.

5. All the rational and irrational numbers make up the collection of real numbers.

6. If risrational and s is irrational, then » + s and » — s are irrational numbers, and »s and "
are irrational numbers, r # 0.

7. For positive real numbers a and b, the following identities hold:
. . [a a
(i) Vab =Javb (ii) \f;_ﬁ
(iii) (x/E+xE)(f—x/Z)=a—b (iv) (a+«@)(a—\@)=a2—b
v) (\/Z+\/3)2 =a+ 2\ab + b
Ja

8. To rationalise the denominator of JEI+ L we multiply this by \/g—:z, where a and b are

integers.
9. Leta> 0 be areal number and p and ¢ be rational numbers. Then

(). at=a " (i) (@) = @

(iii) Z_ —are (iv) a’b® = (aby



SBogrgErdo 49

1.6 Soroio :
&3 8:96,5"?30‘53058 o0 &8 (Bob @ore SGyowro.

1. a8 Qdogyg 7' ©B8BD Qdogg OTPO0E I 0 g 088 Treied. aé&éﬁ P 0BA5w g e o“g)vg Ddoggen

Sodasw g # 0.

[

.28 éospeg s %0 883D éospé OTPO0E § g ErH08° TS0 aé&tﬁ P, qen @Dg éogpege:o INblolovey)

q#0
3. 2.8 o¥5dud Sogy @) 83008 DB By B8 wodo S° @é@e‘ézﬁxﬁaeg B3°0E0 DO 28
Qdogy ci’mé& 83208 DJBed OBV 88 ®od0o =9 @Eﬁaé $3°080 ©ond b E8HD Qdogy.

4. 2.8 88Hc%H K)osp?g RBoE) B8°0d AJBes ®odo 5P HBAW eéée)e‘éo 5 $3°08 B¢, EIarnfela
®@080 30 DB @ée)éo 5 Br0d AJBeaen @Y BB K)ospéé.

5. o) e55B0% S8 EEHDH Kogge $SPFE0 TS HoggdTEaD.

6. 7 0056 2.8 BB Dogy 0B § @HIH E8BH Dogyg oS, 18 OO 1 — 5 e E8BaH
Doggen SBAD 7§ SHBA f o0 B8H%H Doggen 1 # 0.

7. a 580 b oo &5 %% Somgen ©and & Bod SEFETS AhSTes SOIan.
(i) Jab =avh (i) e =3¢
(i) (Va +vb)(Na =vb)=a-b (iv) (a+b)(a=b)=a’~b
) (\/Z+«/Z)2 =a +2\Jab +b

1 . \/Z - b A
8. =, Ty ©B5HDO Taswers HBAY o N B0, BEE a$8a b en &Y
‘éoaa?sen.

9. a> 028 S Hogy HOAW P, g e ©EEHDH Somgen ©wond
() & .at=a"1 (i1) (a")? = a1

(iii) Z— —are (iv) a’b” = (aby



50 POLYNOMIALS

D0

[=]

0962CH02

CHAPTER 2

POLYNOMIALS
I

2.1 Introduction

You have studied algebraic expressions, their addition, subtraction, multiplication and division
in earlier classes. You also have studied how to factorise some algebraic expressions. You may
recall the algebraic identities :

(x+p)=x*+2xy + 2

(x—py=x*—2xy +)
and =y =ty (x—y)
and their use in factorisation. In this chapter, we shall start our study with a particular type of
algebraic expression, called polynomial, and the terminology related to it. We shall also study
the Remainder Theorem and Factor Theorem and their use in the factorisation of polynomials.

In addition to the above, we shall study some more algebraic identities and their use in
factorisation and in evaluating some given expressions.

2.2 Polynomials in One Variable
Let us begin by recalling that a variable is denoted by a symbol that can take any real value. We
use the letters x, y, z, etc. to denote variables. Notice that 2x, 3x, — x, —%x are algebraic

expressions. All these expressions are of the form (a constant) x x. Now suppose we want to
write an expression which is (a constant) % (a variable) and we do not know what the constant is.
In such cases, we write the constant as a, b, ¢, etc. So the expression will be ax, say.

However, there is a difference between a letter denoting a constant and a letter denoting a
variable. The values of the constants remain the same throughout a particular situation, that is,
the values of the constants do not change in a given problem, but the value of a variable can keep
changing.
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(%)

Now, consider a square of side 3 units (see Fig. 2.1). What is its

perimeter? You know that the perimeter of a square is the sum of the

(%)

(O8]

lengths of its four sides. Here, each side is 3 units. So, its perimeter is 4

x 3,1.e., 12 units. What will be the perimeter if each side of the square is
10 units? The perimeter is 4 x 10, i.e., 40 units. In case the length of each
side is x units (see Fig. 2.2), the perimeter is given by 4x units. So, as the

(%)

Fig. 2.1

length of the side varies, the perimeter varies.

Can you find the area of the square PQRS? It isx x x =x? square units. g X R
x? is an algebraic expression. You are also familiar with other algebraic
expressions like 2x, x* + 2x, x> —x* + 4x + 7. Note that, all the algebraic  ~ X
expressions we have considered so far have only whole numbers as the

exponents of the variable. Expressions of this form are called polynomials X
in one variable. In the examples above, the variable is x. For instance, x> Fig. 2.2
—x*+4x + 7 is a polynomial in x. Similarly, 3y + 5y is a polynomial in
the variable y and * + 4 is a polynomial in the variable ¢.

In the polynomial x* + 2x, the expressions x* and 2x are called the terms of the polynomial.
Similarly, the polynomial 3y*+ 5y + 7 has three terms, namely, 3)% Sy and 7. Can you write the

terms of the polynomial —x* + 4x? + 7x — 2 ? This polynomial has 4 terms, namely, —x°, 4x?, 7x
and 2.

Each term of a polynomial has a coefficient. So, in —x* + 4x? + 7x — 2, the coefficient of x*
is—1, the coefficient of x* is 4, the coefficient of x is 7 and -2 is the coefficient of x° (Remember,
x”=1). Do you know the coefficient of x in x* —x + 7? It is —1.

2 is also a polynomial. In fact, 2, -5, 7, etc. are examples of constant polynomials. The
constant polynomial 0 is called the zero polynomial. This plays a very important role in the
collection of all polynomials, as you will see in the higher classes.

. . . 1
Now, consider algebraic expressions such as x + = Jx +3and Yy + y*. Do you know that
you can write x + — = x + x'? Here, the exponent of the second term, i.e.,

X
x'is—1, which is not a whole number. So, this algebraic expression is not a polynomial.
. . 1 .1 D
Again, /x + 3 can be written as x2 + 3. Here the exponent of x is > which is not a whole

number. So, is +/x + 3 a polynomial? No, it is not. What about 3/y +)?? Itis also not a polynomial
(Why?).
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If the variable in a polynomial is x, we may denote the polynomial by p(x), or g(x), or
r(x), etc. So, for example, we may write :

px)=2x*+5x-3
q(x) =x° -1

ry) =y ty+l

s(u) =2 —u—u*+ 61°

A polynomial can have any (finite) number of terms. For instance, x'** + x'¥ + ...
+ x>+ x + 1 is a polynomial with 151 terms.

Consider the polynomials 2x, 2, 5x°, —=5x2, y and u*. Do you see that each of these
polynomials has only one term? Polynomials having only one term are called monomials
(‘mono’ means ‘one’).

Now observe each of the following polynomials:

po=x+1, g =x-x, )=yl W)=

How many terms are there in each of these? Each of these polynomials has only two
terms. Polynomials having only two terms are called binomials (‘bi’ means ‘two’).

Similarly, polynomials having only three terms are called trinomials
(“tri” means ‘three’). Some examples of trinomials are

px)=x+x’+m, q(x) =2 tx-x,

r(u)= u+u*-2, (y)y=y*+y+5.

Now, look at the polynomial p(x) = 3x” — 4x® +x + 9. What is the term with the highest
power of x ? It is 3x”. The exponent of x in this term is 7. Similarly, in the polynomial g(y) =
5y% —4y”? — 6, the term with the highest power of y is 5)° and the exponent of y in this term
is 6. We call the highest power of the variable in a polynomial as the degree of the polynomial.

So, the degree of the polynomial 3x” —4x®+ x + 9 is 7 and the degree of the polynomial 5y°
—4y” — 6 is 6. The degree of a non-zero constant polynomial is zero.

Example 1 : Find the degree of each of the polynomials given below:

(1) ¥*—x*+3 (i) 2 —y*—y* +2y8 (iii) 2
Solution : (i) The highest power of the variable is 5. So, the degree of the polynomial is 5.
(i1)The highest power of the variable is 8. So, the degree of the polynomial is 8.

(iii)The only term here is 2 which can be written as 2x°. So the exponent of x is 0. Therefore,
the degree of the polynomial is 0.
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Now observe the polynomials p(x) = 4x + 5, g(y) = 2y, r(f) = t + 2 and s(u) = 3 — u. Do
you see anything common among all of them? The degree of each of these polynomials is one.
A polynomial of degree one is called a linear polynomial. Some more linear polynomials in
one variable are 2x— 1, /2 y+ 1,2 —u. Now, try and find a linear polynomial in x with 3 terms?
You would not be able to find it because a linear polynomial in x can have at most two terms. So,
any linear polynomial in x will be of the form ax + b, where a and b are constants and a # 0
(why?). Similarly, ay + b is a linear polynomial in y.

Now consider the polynomials :
2x*+5, 5x*+3x+m, x*and x*> + %x

Do you agree that they are all of degree two? A polynomial of degree two is called a quadratic
polynomial. Some examples of a quadratic polynomial are 5 —)?, 4y + 5)y* and 6 —y — . Can
you write a quadratic polynomial in one variable with four different terms? You will find that a
quadratic polynomial in one variable will have at most 3 terms. If you list a few more quadratic
polynomials, you will find that any quadratic polynomial in x is of the form ax? + bx + ¢, where
a#0and a, b, c are constants. Similarly, quadratic polynomial in y will be of the form ay* + by
+ ¢, provided a # 0 and a, b, c are constants.

We call a polynomial of degree three a cubic polynomial. Some examples of a cubic
polynomial in x are 4x°, 2x* + 1, 5x° + x%, 6x° —x, 6 —x°, 2x* + 4x? + 6x + 7. How many terms
do you think a cubic polynomial in one variable can have? It can have at most 4 terms. These
may be written in the form ax® + bx? + c¢x + d, where a # 0 and a, b, ¢ and d are constants.

Now, that you have seen what a polynomial of degree 1, degree 2, or degree 3 looks like, can
you write down a polynomial in one variable of degree » for any natural number #? A polynomial
in one variable x of degree # is an expression of the form

ax"+a x'+...+tax+a
n n—1 1 0

wherea, a,a,, ..., a areconstantsand a # 0.

In particular, ifa,=a, = a,=a,=...=a = 0 (all the constants are zero), we get the zero
polynomial, which is denoted by 0. What is the degree of the zero polynomial? The degree of
the zero polynomial is not defined.

So far we have dealt with polynomials in one variable only. We can also have polynomials in
more than one variable. For example, x* + ) + xyz (where variables are x, y and z) is a polynomial
in three variables. Similarly p? + ¢'° + r (where the variables are p, ¢ and r), * +v* (where the
variables are u# and v) are polynomials in three and two variables, respectively. You will be
studying such polynomials in detail later.
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EXERCISE 2.1

1. Which of the following expressions are polynomials in one variable and which are not?
State reasons for your answer.
(i) 42— 3x+7(Gi) ¥+ 3 (i) 3Wr+n2 (V) p+ %
(V) xlO +y3 + fSO
2. Write the coefficients of x in each of the following:
(1) 2+x*+x (i)2—-x*+x* (iii) §x2+x (iv) V2x-1
3. Give one example each of a binomial of degree 35, and of a monomial of degree 100.

4. Write the degree of each of the following polynomials:

(1) 5% +4x*+ Tx (i) 4 —y?
(iii) 5¢ — /7 (iv) 3
5. Classify the following as linear, quadratic and cubic polynomials:
(1) x*+x (i) x — x° (i) y+y*+4  (@(v) 1 +x
(v) 3¢ (vi) r* (vii) 7x°

2.3 Zeroes of a Polynomial
Consider the polynomialp(x) =  5x° —2x* + 3x — 2.
If we replace x by 1 everywhere in p(x), we get
p()y=5x1yY-=2x(1)y+3x(1)-2
=5-2+3-2
=4
So, we say that the value of p(x) atx =1 is 4.
Similarly,  p(0) = 5(0)° — 2(0)* + 3(0) 2
=-2
Can you find p(—1)?
Example 2 : Find the value of each of the following polynomials at the indicated value of
variables:
(1) p(x)=5x>-3x+Tatx=1.
(i1) g(y) =3y —4y + J11 aty = 2.
(i) p() =4+ 5Ff -~ + 6 att=a.
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Solution : (i) p(x) = 5x* —3x + 7
The value of the polynomial p(x) at x =1 is given by
p(l)=51)-3(1)+7
=5-3+7= 9
(i) g(v) =3y’ -4y + Ju1
The value of the polynomial g(y) at y =2 is given by
q(2) =32y —4Q2)+ V11 =24 -8+ V11 =16 + V11
(iii) p(f)y=4t*+5f -+ 6
The value of the polynomial p(7) at = a is given by
pla)=4a*+54 —a*+6
Now, consider the polynomial p(x) =x— 1.
What is p(1)? Note that : p(1)=1-1=0.
As p(1) =0, we say that 1 is a zero of the polynomial p(x).
Similarly, you can check that 2 is a zero of g(x), where g(x) =x — 2.
In general, we say that a zero of a polynomial p(x) is a number ¢ such that p(c) = 0.

You must have observed that the zero of the polynomial x — 1 is obtained by equating it to 0,
i.e.,x—1=0, which gives x = 1. We say p(x) = 0 is a polynomial equation and 1 is the root of
the polynomial equation p(x) = 0. So we say 1 is the zero of the polynomial x — 1, or a root of
the polynomial equation x — 1 = 0.

Now, consider the constant polynomial 5. Can you tell what its zero is? It has no zero because
replacing x by any number in 5x° still gives us 5. In fact, a non-zero constant polynomial has
no zero. What about the zeroes of the zero polynomial? By convention, every real number is a
zero of the zero polynomial.

Example 3 : Check whether —2 and 2 are zeroes of the polynomial x + 2.
Solution : Let p(x) =x + 2.

Then p(2)=2+2=4p(-2) = 2+2=0

Therefore, -2 is a zero of the polynomial x + 2, but 2 is not.

Example 4 : Find a zero of the polynomial p(x) =2x + 1.

Solution : Finding a zero of p(x), is the same as solving the equation
px)=0
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. 1
Now, 2x+1=0g1vesusx=—§
1. .
So, - 5 isazero of the polynomial 2x + 1.

Now, if p(x) =ax + b, a #0, 1s a linear polynomial, how can we find a zero of p(x)? Example
4 may have given you some idea. Finding a zero of the polynomial p(x), amounts to solving the
polynomial equation p(x) = 0.
Now, p(x) = 0 means ax+b=0,a#0
So, ax =—

1e., xX=-—-

b . .
So,x= - s the only zero of p(x), 1.e., a linear polynomial has one and only one zero.
Now we can say that 1 is the zero of x — 1, and -2 is the zero of x + 2.

Example 5 : Verify whether 2 and 0 are zeroes of the polynomial x? — 2x.

Solution : Let px) =x*—2x
Then pR)=22-4=4-4=0
and p(0)=0-0=0

Hence, 2 and 0 are both zeroes of the polynomial x> — 2x.
Let us now list our observations:

(1) A zero of a polynomial need not be 0.

(i1) 0 may be a zero of a polynomial.
(111) Every linear polynomial has one and only one zero.

(iv) A polynomial can have more than one zero.

EXERCISE 2.2
1. Find the value of the polynomial 5x — 4x? + 3 at
(i) x=0 (i) x=-1 (iii) x =2
2. Find p(0), p(1) and p(2) for each of the following polynomials:
(1) po)=ry*—y+1 (i) p(6)=2+t+2F£ - F
(iii) p(x) = x° (V) pr) = -1 (x+1)
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3. Verify whether the following are zeroes of the polynomial, indicated against them.

(i) p(x) =3x+1, x:—% (ii) p(x) =5x —m, ng
(i) p(x) =x*—1, x =1, -1 (iv) p)=@x+1)(x-2), x=-1,2
(V) px) =x%, x=0 Vi) p(x)=Ix+ m, x= -2

N | =

. an _ 12 P _
(vil) p(x) =3x* -1, x 5 (vil) p(x)=2x+ 1, x
4. Find the zero of the polynomial in each of the following cases:
(1) px)=x+5 (i) p(x)=x—5 (i) p(x)=2x+5
(v) p(x) =3x-2 (v) p(x) = 3x (vi) p(x)=ax,a#0

(vi)p(x) =cx +d, c #0, c, d are real numbers.

2.4 Factorisation of Polynomials
Let us now look at the situation of Example 10 above more closely. It tells us that since the
remainder, q(—%j =0, (2¢ + 1) is a factor of g(¢), i.e., q(f) = (2t + 1) g(?)
for some polynomial g(7). This is a particular case of the following theorem.
Factor Theorem : If p(x) is a polynomial of degree » > 1 and a is any real number, then
(i) x —ais a factor of p(x), if p(a) = 0, and (ii) p(a) = 0, if x — a is a factor of p(x).
Proof: By the Remainder Theorem, p(x)=(x — a) g(x) + p(a).
(1) If p(a) = 0, then p(x) = (x — a) g(x), which shows that x — a is a factor of p(x).
(i1) Since x — a is a factor of p(x), p(x) = (x — a) g(x) for same polynomial g(x). In this case,
pla)=(a—a)gla)=0.
Example 6 : Examine whether x + 2 is a factor of x* + 3x* + 5x + 6 and of 2x + 4.
Solution : The zero of x + 2 is 2. Let  p(x) =x° + 3x* + 5x + 6 and s(x) =2x + 4
Then, p(=2) = (-2 +3(-2)*+5(-2)+6
=-8+12-10+6
=0

So, by the Factor Theorem, x + 2 is a factor of x* + 3x* + 5x + 6.
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4. (Bod a50dhe %§J°26§ Qenden ééﬁs&o&.
() px)=x+5 (ii) p(x)=x—-15 (i) p(x)=2x+ 5
(v) p(x)=3x—-2 (v) p(x) = 3x (vi) p(x)=ax,a#0

(vi) p(x) =cx+d, c#0, ¢, d o0 ESSomgen.

2.4 22505800 P80 Défeed

D eoesede 10 &° Ko JoesTyR) DABBo é@%@wgo. 28, 30 ¢ —% =0 e S (21 + 1) 036
q(f) & sBeroshHon. o q(f) = (2t + 1) g(1), g(f) o3 .8 25050, 30 Bobd drposds a8
@S%é Qoggo.
isglefarilel] ?ocgoééo D s0He H0Xrmo 1> 1 Ko asoHd p(x) Hda a HB ardBvog
9 (1) p(a) = 0 wond (x — a) @30 p(x)E se8erodo ©HEHod. Hodck (ii) (x — a) &6
p(x) & se8ero8o @ond p(a) = 0 eH&Hod.
QErHe @ 34 drpodo [sdo p(x)=(x —a) q(x) + p(a)
(i) p(a)=0eows H088)0s® p(x)=(x—a) q(x) BV o p(x)& X — a 2.8 s*Beroto ©HE0b.
(ii) addFore X —a o386 p(x) & sederodo 529D p(x) = (x — a) g(x) SEgHEod. g(x) &b
a8 ad0de. .. p(a)=(a—a) gla)=0.

ST 6 1 x + 2 0360 X+ 3x2+ S5x + 6 50805 2x + 4 0% so8eroo edome?
PED 1 x 1 2 g, Eredg Dend 2 . p(x) = x° + 3x7 + Sx + 6 8o $(x) = 2x + 4 950l
P(=2) =(=2) + 3(=2) + 5(-2) + 6
=-8+12-10+6
P, =0

SHI, SBerol drpodo (s B 2IT0HG X+ 3x%+ 5x + 65 x + 2 so8er080 ©95)E008.
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Again, s(-2)=2(-2)+4=0

So, x+2 is a factor of 2x + 4. In fact, you can check this without applying the Factor Theorem,
since 2x +4 =2(x + 2).

Example 7 : Find the value of &, if x — 1 is a factor of 4x° + 3x* — 4x + k.

Solution : As x — 1 is a factor of p(x) =4x* + 3x* —4x + k, p(1) =0

Now, p(1) =41 +3(1)*-4(1) +k
So, 4+3-4+k= 0
1e., k= -3

We will now use the Factor Theorem to factorise some polynomials of degree 2 and 3. You are
already familiar with the factorisation of a quadratic polynomial like
x* + Ix + m. You had factorised it by splitting the middle term Ix as ax + bx so that
ab=m. Thenx*>+ Ix + m=(x + a) (x + b). We shall now try to factorise quadratic polynomials
of the type ax* + bx + ¢, where a # 0 and a, b, ¢ are constants.

Factorisation of the polynomial ax* + bx + ¢ by splitting the middle term is as follows:

2

. 3
Let its factors be (px + ¢) and (rx + 5). Then X 3% = first term of quotient
X

a*+bxtc=(px+q)(rx+s)=prx*+ (ps+tqgr)yx+gs
Comparing the coefficients of x*, we get a = pr-.
Similarly, comparing the coefficients of x, we get b = ps + gr.
And, on comparing the constant terms, we get ¢ = gs.

This shows us that b is the sum of two numbers ps and gr, whose product is
(ps)gr) = (pr)(gs) = ac.

Therefore, to factorise ax® + bx + ¢, we have to write b as the sum of two numbers whose
product is ac. This will be clear from Example 13.
Example 8 : Factorise 6x* + 17x + 5 by splitting the middle term, and by using the Factor
Theorem.

Solution 1 : (By splitting method) : If we can find two numbers p and g such that
ptqg=17 and pg=6x5=30,then we can get the factors.

So, let us look for the pairs of factors of 30. Some are 1 and 30,2 and 15, 3 and 10, 5 and 6. Of
these pairs, 2 and 15 will giveusp+¢g=17.



8o, s(-2)=2(-2)+4=0
oo (X +2) @38 2x + 4 & 508080 ©99H08. dotHBod 2x +4 =2(x +2) ©HHod. H (Hedo
S8es08 BEPoB0 (HBFHOBLOER X + 2 se8eroso ol IHDD)

STEsdes 7 1 4x° + 307 — 4x + k oF 050H68 (x — 1) s8er08DB k Dend ézﬁ:é’sgyo&.

FES (x— 1) 38 p(x) =4x° + 3x% — dx + k 250568 sederoso, p(1)=0

SR, p(1)=4(1) +3(1)*-4(1) +k
S 4+3-4+k=0
drve., k=-3

230 sPBer0s ?ocgoééo @080 HBXT0 2 HBAW 3 Ko 5TVHLe SePEETPOTTeNT S)céﬁ"%zézﬁab).
x>+ Ix + mHod SET0HEOL SPBeT0E Defessd BOHEO 5B BOVS DRCHH. LanS SoeIgHES Ix
D ax + bx $o8 Toh Hwre Seavde JELIE, ab = m wdhty Sl s V0. wHPLD
¥ Hlxtm= (x+a)(x+b) gy ax’ + bx + c oF S B0 s28eros Dgferd Vopo. v
a#0%0c» a,b, cen Joroseen.

PR VgPRoBE TRT® TVHE ax’+bx+c RBoE) 508esr08 D (8od Dorr &onob.
& Y aBH08 (px + q) BAw (1X + 5) ©ID serosten ©EOTO.

=S ax* +bxtce=(px+q) (rx+s)=prx*+ (ps+qgr)x+gs

x* theeseon Dyr H5H a=pr

BBAGFOrT, X tHeeseod Beyr, Kok b=ps+qr

8 Do Sy = qs o SJamw.
@ 2o

B X008 Ho35 HowEo b ©Ib ps H8w gr © Indo o Bodyod. D ©8Q0
(ps)(gr) = (pr)(gs) = ac & TeeHHD).

AR o8 ax*+ bx+c $BToDH0 S°TeT08 D5 dS® b 938 Botd Dogse Indo o, T8 oo ac
®d Bendyod. Bd EHard IT) ewerden 186° Bendyob.

SRS 8 1 6x7 + 17x + 55 Sogighiso iR 52808 Rpodo (Heedo sderostenr QEBHoE.

PED 1: (050 DEHANE TNTR) : p,gen @3 Borboagen HBA p + g =17 Lddn pg =6
X 5 = 30 se8esroseoy SPothero.

30 egore Tahrn sPdroste wde $8497 (1,30), (2,15), (3,10) (5 ,6) a0’ (2,15) ws
ptq=175 &3 $55006.
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So,6x*+ 17x+5= 6x*+ 2+ 15)x+5
= 6x>+2x+ 15x+5
=2x3x+1)+53x+ 1)
=Bx+1)2x+5)

Solution 2 : (Using the Factor Theorem)

ox>+ 17x+5= 6()62 + %x + %) = 6 p(x), say. If a and b are the zeroes of p(x), then
5 e erels
6x*+ 17x +5=6(x — a) (x—b). So, ab = 3 Let us look at some possibilities for a and b.

1y 1 17(1

They could be +—, + ,ig,ig,il.Now, p(—)=—+—(—)+%¢O.BUI

2) 4 6(2

_ 1
p[?l) =0. So, (x ' 5) is a factor of p(x). Similarly, by trial, you can find that (x ’ %j sa

factor of p(x).

Therefore, 6x>+ 17x +5= 6(x + %)(x + %j

{5

= Bx+1)(2x +5)

For the example above, the use of the splitting method appears more efficient. However, let us
consider another example.
Example 9 : Factorise y* — 5y + 6 by using the Factor Theorem.

Solution : Let p(y) =)*— 5y + 6. Now, if p(y) = (v — a) (v — b), you know that the constant term
will be ab. So, ab = 6. So, to look for the factors of p(y), we look at the factors of 6.

The factors of 6 are 1, 2 and 3.
Now, p(2)=2*—(5%x2)+6=0

So, y—2isa factor of p(y).



98 6>+ 17x+5 =6x* + 2+ 15)x +5
=6x*+2x+ 15x+5
=2x(3x+1)+53Bx+ 1)
=Bx+1)2x+5)

PED 2 1 (s°6e08 Rrpodo (HseB0)

6x*+17x+ 5= 6(x2 + %x + %) =6 p(x) ©58%8. 2.83¢ a, bev p(x) BwE) TPy Devden

wond 6x* + 17x + 5 =6(x —a) (x — b). & ab = % a, b % FEEHdhy B HB8DoBT,
17( 1 5

N | =
W | =

2 6(2) 6

- 1
P(?IJ =0, 529, (x + 5) 030 p(X) & =8erodo ©HH0d. BRFore (x + %) Eyor

SPEETr08 0SB0k,
wothBeS, 6>+ 17x+5 = 6[x+%)(x+%)

e

Gx + 1) 2x +5)

P emirdne af HigHEo EED HEB ©HJBIG o B)HEY). W0EE ewiren SrTEo.
awedrdn 91 )P =5y + 6 & 52808 dpodo (Bt S0l Dgfs FaHod.

FES 1 p(y)=1* =5y + 6. 395 p(y) = —a) (y — b) ©5%08 ab = 6 . p(y)d sederoseen
SIS B0 6% se8erosten Sraro.

6 sedegeoseen 1,2,3 Sodddw 6.
aéoyzéap(2)=22—(5 x2)+6=0

98 (¥ —2) @38 p(y) ® 28080 @HE0b.
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Also, p(3)=3*-(5%x3)+6=0

So, y—3isalso a factor of y?— 5y + 6.

Therefore, »*—5y+6=(-2)(y—3)

Note that y* — 5y + 6 can also be factorised by splitting the middle term —5y.

Now, let us consider factorising cubic polynomials. Here, the splitting method will not be

appropriate to start with. We need to find at least one factor first, as you will see in the following

example.

Example 10 : Factorise x* — 23x? + 142x — 120.

Solution : Let p(x) = x*—23x*+ 142x - 120

We shall now look for all the factors of —120. Some of these are +1, +£2, +3,

+4, +£5,£6,+£8, £10, £12, £15, £20, £24, £30, +60.

By trial, we find that p(1) = 0. So x — 1 is a factor of p(x).

Now we see that x* — 23x? + 142x — 120 = x> — x* = 22x* + 22x + 120x — 120
=x*(x—-1)—22x(x— 1)+ 120(x - 1) (Why?)
=(x—1)(x*—22x+120) [Taking (x— 1) common]

We could have also got this by dividing p(x) by x — 1.

Now x?—22x + 120 can be factorised either by splitting the middle term or by using the Factor
theorem. By splitting the middle term, we have:

x2—=22x+120=x>*—12x—10x + 120
=x(x—12) - 10(x — 12)
= (x—12) (x - 10)

So, X =23x*—142x—120= (x — I)(x — 10)(x — 12)
EXERCISE 2.3
1. Determine which of the following polynomials has (x + 1) a factor :
() X¥+x*+x+1 () x*+x*+x*+x+1
(i) x* + 3 + 3x* +x + 1 (iv) ¥ —x2 = (2+2)x+2
2. Use the Factor Theorem to determine whether g(x) is a factor of p(x) in each of the
following cases:

() px)=2x*+x>-2x—-1,g(x)=x+ 1
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ooy, p(3)=3>-(5x3)+6=0

5293 (¥ — 3) @36 &rwe )P — 5) + 6 & so8erodo ©H&Hod.

wotBes, 12— Sy +6=(y—2)y—3)

05550 —S5YQ DefRosto TRoe Eree V= 5y + 69 Erre 5088008 Qe 30‘5&6:‘5{)@ 110oSok.

P =5+ 68 Sy S0 —5y DEhohEo mRTe SP8eros Dgfesd wbhod wIH X0 HBoDHE .
BAPE, 0 2TV SPBEFosPeNNT DGBoHE K8y BenhBrowro. s, éacé?géw"&)& QEED Ka%ﬁ@
©EPOTHO 2. Lot eSS 28080 ST, A (Bod &meirdnd® SrKod.
e 10 @ x3 —23x2 + 142x — 120 % sedeseoseene g580S508.

TS p(x) =xF —23x% + 142x — 120 e008%08.

~120 B¥) sderosren @oB HO8H @ +1,+2,+3,+4, £5,+£6,+8, +£10, +12, +15, +20,
+24, +30, +60.

DBE® DAY, p(1) =0 oHHob. 5293 (x — 1) @380 p(X) & SBero8HF08.
e x° — 23x7 + 142x — 120 = x° — x* — 22x* + 22x + 120x — 120
= (x—1) = 22x(x = 1)+ 120(x— 1) (Doto?)
=(x—1) (x> =22x + 120) (x — 15 &Spére Sodotnr)
oo p(x) X — 1 T grRodSPs Srae HA TPosBsH. X2 —22x + 120.

8Pt X7 —22x + 120 K H5535m°R) DEbhHEo woe Pl Boe seerosee RTEOB0 TRO° SeFoseenrT
DBoBHT.

X =22x+ 120 = x*—12x — 10x + 120
=x(x—12) - 10(x — 12)
=x-12) (x—-10)
=98, =23 -142x—-120= (x — I)(x — 10)(x — 12)
@a;:vgéo 2.3

1. 808 255050 (x + 1) se8erodsnrns® S6° QeBood?

) x¥+x*+x+1 () x*+x*+x*+x+1
(iii) x* + 3x° + 3x2 + x + 1 (iv) ¥ —x2 = (2+2)x+2

2. 5808 drrpodo GH@PNoN (Eob 250HHS” (HS $oiG)oS e p(x) & g(X) *BerosrHS®
B86° BoHod.

() px)=2x+x>*—2x—1,g(x)=x+ 1
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() p(x)=x*+3x*+3x+ 1, g(x)=x+2
(i) p(x) =x* —4x* +x + 6, g(x) =x - 3
3. Find the value of &, if x — 1 is a factor of p(x) in each of the following cases:
() px)=x*+x+k (ii) p(x) =2x* + kx + 2
(iii) p(x) = kx> — 2x + 1 (iv) p(x) = kx> = 3x + k

4. Factorise :

(1) 12x*=7x + 1 (i) 2x* + 7x + 3
(iii) 6x* + 5x — 6 (iv) 3x*—x—4

5. Factorise :
() ¥*-2x*—x+2 (i) x* = 3x*—9%x -5

(i) x* + 13x2+ 32x + 20 (iv) 2)° +y*=2y—1

2.5 Algebraic Identities

From your earlier classes, you may recall that an algebraic identity is an algebraic equation that
is true for all values of the variables occurring in it. You have studied the following algebraic
identities in earlier classes:

Identity I : (x +y)*=x>+2xy +)?

Identity IT : (x — y)* = x* — 2xy + )?

Identity II1: x> —y*=(x + y) (x — )

Identity IV: (x +a) (x + b)=x*+ (a+ b)x + ab

You must have also used some of these algebraic identities to factorise the algebraic
expressions. You can also see their utility in computations.

Example 11 : Find the following products using appropriate identities:
() r+3)(x+3) (i) (x=3) (x +5)
Solution : (i) Here we can use Identity I : (x + y)* = x* + 2xy + ). Putting y = 3 in it, we get
(x+3) (x+3)=(x+3y=x>+2(x)(3) + 3y
=x*+6x+9
(i1) Using Identity IV above, i.c., (x + a) (x + b) =x*+ (a + b)x + ab, we have
x=3)(x+5)=x>+ (=3 +5)x+(-3)5)
=x*+2x-15
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(i) p(x)=x*+3x*+3x+ 1, g(x)=x+2
(i) p(x)=x*—4x*+x+ 6,g(x)=x—3
3. (80B 250Dhed’, (H8 KoB8)0E e p(x) & X — 1 SCerosB k Dend EHFI0E.
() px)=x>+x+k (i) p(x)=2x>+t kx + /2
(iil) p(x) = kx* — ox + 1 (iv) p(x) =kx*-3x+ k

4. sedeseoseente Q35B0508.

(1) 12x*=Tx+1 (i) 2x*+ 7x + 3
(iil) 6x* + 5x — 6 (iv) 3x*—x—4

5. =o8ezrosrene QgfRoNo’k.
() ¥ —=2x*—x+2 (i) x¥*=3x*—9x -5

(i) x* + 13x2+ 32x + 20 (iv) 2)° +y*=2y—1

2.5 DeeiiBE B85 o8Serren

2.8 Deatiehes D880 Ko SETHOH & Devden HAFHOVTIT AuRFeor ST AN KIS0
0P HBYE &ﬁg)gso&. > [Bod SBKEeS® & (Bod Desiids étﬁgﬁﬁbééww 36}3&5&6}.

B83888e00 1 t(xty)P=x2+2xpy+)7°
B8088e0 [T ¢ (x — y)? =x% — 2xy + )7
88880 I 1 x?2 =) =(x+y) (x—y)
S8Eseo IV 1 (x+a) (x +b)=x+ (a+ b)x + ab
DEaH JSSrFod soBerod Jwd BSners® éésé&éémoa SODeNDEEeoD. BN Q)
amESne H089Tro.
&rrsEe 11 @ (808 88 SERHEBETeH SHRPACD oered ER00s.
DE+3)Ex+3) ) x-3)(x+5)
P55 ¢ (1) mehye, 9880 1 (x +y)? =x7+ 2xy +)? J &83&@AF0. 205S° y =3 0
(x+3) (x+3)=(x+3y=x*+2(x)(3) + 3)’
=x*+6x+9
(i) mxhies S8EBe0 [V Q 685@3mhod (x +a) (x +b) =x>+ (a+ b)x + ab J ¢5BrAY
3dH (x=3)(x+5)=x*+ (-3 +5x+ (-3)5)
=x*+2x—15
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Example 12 : Evaluate 105 x 106 without multiplying directly.

Solution : 105 x 106 = (100 + 5) x (100 + 6)
= (100)*+ (5 +6) (100) + (5 x 6), using Identity IV
= 10000 + 1100 + 30
= 11130

You have seen some uses of the identities listed above in finding the product of some given
expressions. These identities are useful in factorisation of algebraic expressions also, as you
can see in the following examples.

Example 13 : Factorise:

2

(i) 4942 + 70ab + 25 (ii) %2 -L
Solution : (1) Here you can see that
49a* = (Ta)?, 25b* = (5b)*, 70ab = 2(7a) (5b)
Comparing the given expression with x? + 2xy + )2, we observe that x = 7a and y = 5b.
Using Identity I, we get

49a° + 70ab + 25b* = (Ta + 5b)* = (Ta + 5b) (7Ta + 5b)

2 2 2
(i) We have 225> - 2 = (éx) _ (l)
4 9 2 3

Now comparing it with Identity 111, we get
2243
4 9 2 3
_ (éx + l)(ix _ 1)
2 312 3

So far, all our identities involved products of binomials. Let us now extend the Identity I to a
trinomial x + y + z. We shall compute (x + y + z)* by using Identity 1.

Letx+y=t. Then,
(c+y+zP=(1+2p
=r+2z+ 1 (Using Identity I)
=x+yP+2x+yz+2z° (Substituting the value of 7)



e 12 : Hesedo Bchomd 105 X 106 Gwg) wepdy) E5iPSod.

S 105 x 106 = (100 + 5) x (100 + 6)
= (100)* + (5 + 6) (100) + (5 % 6), (3880 [V esG@rAoD)
= 10000 + 1100 + 30
= 11130

2085887 Hodo PED éé&éﬁbééww E) oa:;o:éa EoRedoerst 65’550535363503). 8% 80d emesTSed®
DE0%H vdrFed 8ol Jgfesd DoHmedE éé&é@oééwo:& SIBPACTHLD. A s (Bod
T AT NSYoN K0 BHEY).

&esedes 13 @ & (8o se8erosrenrr DgiBoSod.
(i) 4942 + 70ab + 255 (ii) 2 - %
P31 (1) a8
494> = (Ta)?, 25b* = (5b)*, 70ab = 2(7a) (5b)
AR x? 4 2xy +)7 8 ey x = Ta 50akw y = 5b @HEob.
BBM8Bea0 | (oo
49a° + 70ab + 25b* = (Ta + 5b)* = (Ta + 5b) (7Ta + 5b)

25 v (5 (»Y
o240
82 ‘éé‘séﬁbééeao 111 & Qﬁeam
2 2
g8
4 9 2 3
(3
2 3 2 3

BAIBH Hdo ES ééséi)aééme)&&o‘ﬁm, B @a}goéo 002005005, 3P Hdo I
BBG0DECeERY) SHTPA0D, BHO X +y + 2 &E) $Bo, (x +y +2)* D Kdcro.

X +y=1te®ond

(cty+zP=(r+2F
= +2z+ 7P (05 HBFBBea0)
=(x+ty)l+2x+y)z+27 (D0 (HZHoB)
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=x*+2xy+y*+2xz+2yz+ 2z  (Using Identity I)
=x*+y* + 22 + 2xy + 2yz + 2zx(Rearranging the terms)
So, we get the following identity:
Identity V: (x+y+z)>=x>+)?+ 22+ 2xp + 2pz + 22x

Remark : We call the right hand side expression the expanded form of the left hand side
expression. Note that the expansion of (x + y + z)? consists of three square terms and three
product terms.

Example 14 : Write (3a + 4b + 5¢)* in expanded form.
Solution : Comparing the given expression with (x + y +z)?, we find that
x=3a,y=4band z= 5c.
Therefore, using Identity V, we have
Ba+4b+ 5¢)*=@Ba)* + (4b)* + (5¢)* + 2(3a)(4b) + 2(4b)(5¢) + 2(5¢)(3a)
= 9a® + 16b* + 25¢* + 24ab + 40bc + 30ac
Example 15 : Expand (4a —2b—3c¢)’.
Solution : Using Identity V, we have
(4a —2b —3c)* = [4a + (-2b) + (-30)]?
= (4a)’ + (-2b)* + (3¢)* + 2(4a)(-2b) + 2(-2b)(-3¢) + 2(-3¢)(4a)
= 16a* + 4b* + 9¢* — 16ab + 12bc — 24ac
Example 16 : Factorise 4x* + y* + z? — 4xy — 2yz + 4xz.
Solution : We have 4x* + y* + 22 — 4xy — 2yz + 4xz = (2x)* + ()’ + (2)* + 2(2x)(—)
+2()(2) + 2(2x)(2)
= [2x+ (=) +z]*  (Using Identity V)
=@x-ytzP=Q2x-y+z)(2x-y+2z)

So far, we have dealt with identities involving second degree terms. Now let us extend Identity
I to compute (x + y)*. We have:

(x+y) = (x+y) (x+p)
= () + 20y +7)
= X + 2xy £y + e + 2xp +)7)
=X+ 2% +x* +x%y + 207 +)°
=x’+3x% + 37 +)°
=x' )+ 3n(x )



=x*+2xy+ )+ 2xz + 2z + 27 (350880 1D e5@rAoD)
=X+ + 22+ 2xp + 2pz + 2zx (Sore (Eho $8) Tookhre)
509, 266552621)%68@0 BE° T°CDHEY).
éésﬁfbéésao Vix+y+z?t=xr+)y?+ 72+ 2xp+2p7 + 22x
DBt HEZH Gy BRI, MESHBHS 9 SEeid0 Ts) DSBes Seborr DSy, (x+y +2) 6
Qo5ed Y Do HOAD Bt 0 Srod EOA Gotnod.
amesedes 14 : (3a+4b + 5c) S D58 ErHos’ Tahob.
FES T e debotn (x +y +2)? 8 Hoyr Ld%
x=3a,y=4b, z=5c Srow.
‘éégéﬁbééeao V (&80
(B3a +4b + 5¢)* = (3a)* + (4b)* + (5¢)* + 2(3a)(4b) + 2(4b)(5¢) + 2(5¢)(3a)
= 94 + 16b> + 25¢% + 24ab + 40bc + 30ac
&S l5: (4a—2b — 3¢)* L JdBoSod.
PES 1 3BRW88eo V (Hsedo,
(4a—2b —3c)* = [4a + (-2b) + (30)
= (4a)’ + (-2b)* + (-3¢)* + 2(4a)(-2b) + 2(-2b)(—3¢) + 2(-3c)(4a)
= 16a* + 4b* + 9¢* — 16ab + 12bc — 24ac
S8 16 : 4x? + )+ 22— dxy — 2yz + 4xz & seSeromeenre QEFRoS08.
RS A2+ )2+ 22 —dxy — 2yz + dxz = (2x)? + ()’ + (2)* + 2(2x)(—)
+2(=p)(2) * 2(2x)(2)
= [2x + () + z]* (3BRD8Bea0 VR e5&@AoD)
=2x—y+tzP=2x—-y+t2)2x—y t2)
$050 B0BHEEH VoK HoOSre Hweest Bl 350 éé&éﬁbééwe:& IByowro. B/IPE HHdo
$ERHWEBe0 1D DAGRACD (x + y)’ DJBes Bepo. S

(x+y)=(x+y) (x+yy
= (rF ) F 20 +07)
= X7+ 2xy 4 ) + A+ 2xp +)7)
=X+ 2x% +x7 +x%y + 2x)7 + )7
= x>+ 3x% + 3x7 +)°
= x4y + 3xy(x )
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So, we get the following identity:
Identity VI: (x+p)’=x>+p*+3xp (x ty)
Also, by replacing y by —y in the Identity VI, we get
Identity VII :(x —y)* = x* —y* - 3xp(x - y)
=x*-3xy + 3x2—y*
Example 17 : Write the following cubes in the expanded form:
(i) Ba + 4b)y’ (i) (5p — 3¢)°
Solution : (i) Comparing the given expression with (x + y)*, we find that
x = 3aand y =4bh.
So, using Identity VI, we have:
(Ba + 4b)’ = (3a)’ + (4b)* + 3(3a)(4b)(3a + 4b)
= 27a* + 64b° + 108a’h + 144ab’
(ii) Comparing the given expression with (x — y)*, we find that
x=5p,y=3q.
So, using Identity VII, we have:
(5p =39y = (5p) — (39)’ = 3(5p)(39)(S5p — 3q)
= 125p° — 27¢° — 225p*q + 135pg?
Example 18 : Evaluate each of the following using suitable identities:
(1) (104)} (i1) (999)°
Solution : (i) We have
(104)> = (100 + 4)°
= (100)° + (4)* + 3(100)(4)(100 + 4)
(Using Identity VI)
= 1000000 + 64 + 124800
= 1124864
(i1) We have
(999)° = (1000 — 1)*
= (1000)* — (1)* — 3(1000)(1)(1000 — 1)
(Using Identity VII)
= 1000000000 — 1 — 2997000
= 997002999



52, 0Jo &S 6655265)0%68?@ [E° T DB,
‘ééséﬁ):éés’ao Vi:(x+y)P=x+y*+3xy(x+y)
BBasBeso VIS® y 5;260@5’3 %0 oS 00 (808 HERHBEBE0 FPorEro.
‘éécség)aéésao VIL: (x—p)=x*-y'-3xp(x—y)
=x*—-3x% + 3xp*—)?
&esrdes 17 : (8od Hhrod DBoSoR.
(i) Ba + 4b)y’ (i) (5p — 3¢)°
FES 1 (1) ad)d JEeard) (x + )’ 8 Sy, Hi5H
X = 3a 58050 y = 4b e0tHrio.
58, éégéﬁbéés@o VI a@»03
(3a + 4b)’ = (3a)’ + (4b)* + 3(3a)(4b)(3a + 4b)
= 27a* + 64b° + 108a’h + 144ab*
(if) @Dy Seardy (x — ) & Deyr, Ho3%H
x=5p, y=13q.
SEORS) éé&é@aéés@o VIl &5&»03
(5p = 39)’ = (5p)’ = 39)’ = 3(5p)39)(5p — 3q)
= 125p* — 27¢° — 225p*q + 135pq*
&R0 18 1 (808 @A SAS BBRaEBEFOD SI@BPA0YD KBoBok.
(1) (104)° (i1) (999)°
FS 1 (1) (104)* = (100 + 4)°
= (100)° + (4)* + 3(100)(4)(100 + 4)
(38880 VI e5@rho)
= 1000000 + 64 + 124800
= 1124864
(11) (999)° = (1000 — 1)°
= (1000)* — (1)* — 3(1000)(1)(1000 — 1)
(38088e0 VIR 6d@3rho)

= 1000000000 — 1 — 2997000
= 997002999
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Example 19 : Factorise 8x* + 27y + 36x%y + 54xy?
Solution : The given expression can be written as
(2x)° + By)* + 3(4x*)(3y) + 3(2x)(9?)
= (2x) + By)* + 3(2x)*(3y) + 3(20)(3yy’
= (2x + 3y)*  (Using Identity VI)
= (2x + 3y)(2x + 3y)(2x + 3y)
Now consider (x + y + z)(x* + )*+ 22 — xy — yz — zx)
On expanding, we get the product as
x(xX*+ Y+ 22 —xy—yz—zx) t y(x* + y* + 22 — xy — yz — zx)
+z(x* + Yy t 22 —xy—yz—zx) = x>+ x)? + x22 — X’y — xyz — zx* + x%y
+V +y2—x)—yz—xyz+xz+yz+ 2z —xyz — yz* — xz*
=x’+y’+2°-3xyz (On simplification)
So, we obtain the following identity:
Identity VIII : x*+p* + 22 - 3xyz=(x +y + 2)(x* + y* + 22 — xy — yz — 2x)
Example 20 : Factorise : 8x* +)° + 272° — 18xyz
Solution : Here, we have
8x*+y3 + 272 — 18xyz
=(2x) + ) + (32 = 3(20)(»)(32)
= (2x +y +32)[(2x) + »* + (32) = (20)() — (N(32) — (2%)(32)]
=2x+y+3z) (4x* +)* + 9z — 2xy — 3yz — 6x2)

EXERCISE 2.4

1. Use suitable identities to find the following products:
(1) (x+4) (x+10) (i1) (x + 8) (x — 10)(iii) Bx +4) Bx—5)
) 0P+ 072 MG -20) (G +2)

2. Evaluate the following products without multiplying directly:
(i) 103 x 107 (i1) 95 x 96 (iii) 104 x 96

3. Factorise the following using appropriate identities:

(i) 92 + 6xy + 17 (i) 4? -4y + 1 (iii) x* — 1%
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awededes 19 @ 8x° +27)° + 36x%y + 54x)% % seberoseenre dgLoSod.
PED 1 2P Seard) & (Bod DFore TeAhT
= (2x)" + (3)’ + 3(4x*)(3y) + 3(2x)(9”)
= (2x)’ + (3y)’ + 3(2x)’(3y) + 3(2x)(3y)°
= 2x+3y) (3508800 VI ¢dd@rhiod)
= (2x + 3y)(2x + 3y)(2x + 3y)
3% (x+y+z2)(? + )y + 22— xpy — yz —zx) &%stod.
BN DHBoBT, & (Bod wepd) Fothero.
X+ + 2 —xy—yz—zx) + y(x* +)* + 22 —xy —yz — zx)
+z(x*+y P+ 22 —xy—yz—zx) =Xt xp* + x22 — X}y — xyz — zx*> + x%y
+y +yz - —yz—xyz+xz+yz+2 —xyz—yz* — xz*
=x’+)° + 2 = 3xyz (r§580i8re)
%, & 8o HBRWEBeTOL SPotharo.
B8anESeo VIIL: 3 + )3 + 22 = 3xpz = (x +p + 2)(x + p* + 22 — xp — yz — 2X)
&teddes 20 : 8xF + )7 + 272 — 18xyz X sedesroseenre oS0,
PED  adES ko
83 +y° +272° — 18xyz
=(2x)’ + )’ + (32)° = 3(2x)(»)(32)
= 2x +y+32)[(2x) +y* + (B2) - (20)() — ((32) — (2%)(32)]
=2x+y+3z) (4x* +)* + 92> — 2xy — 3yz — 6x2)

@apvagzéo 2.4

1. &od oarod SRS DR GHRPACD KBoBos.
(1) x+4)(x+10) () (x+8) (x—10) (1)) Bx+4)(3x-5)

(V)0 +2)07-3) ) (-2 (+2)
2. Kesedo BeHBom (8od oero E5FSod.
(i) 103 x 107 (ii) 95 x 96 (iii) 104 x 96
3. {8 DEREEeTD GHEPA0D (808 I SeBErostenT EBOB0E.

2

(i) 9x* + 6xy + )7 () 92 -4y +1 (i) ¥ - 1}(’)—0
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9.

. Expand each of the following, using suitable identities:

(i) (x + 2y + 4z)? (i) 2x — y + z) (i)  (-2x+ 3y + 2z)

(V) Ba—Th—cF () (2x+5y-32F  (vi) Ba L 1}2

. Factorise:

(1) 4x* + 92 + 1622 + 12xy — 24yz — 16xz
(i) 2x2+)* + 82 — 22 xy + 4/2yz — 8xz

. Write the following cubes in expanded form:

() @x+ 1y (i) 2a—3b) (iii) BxHT (iv) [x-gyf

. Evaluate the following using suitable identities:

(1) (99)° (i1) (102)° (ii1) (998)°

Factorise each of the following:

(i) 8a® + b* + 12a°b + 6ab* (i) 8a® — b* — 12a°b + 6ab?

(ii1) 27 — 125a° — 135a + 225a>  (iv) 64a’® — 27b° — 144a*b + 108ab?
s L 95,1

V) 27p 26 27 T4t

Verify : () X +y = (x + ) (@ —xy +3)7) (i) ¥’ =)’ =(x-yp) (& +xy+)?)

10. Factorise each of the following:

(1) 27 +1252° (i) 64m®—343n°
[Hint : See Question 9.]

11. Factorise : 27x° + ) + 2> — Oxyz

12. Verify that x* +)° + 23— 3xyz = %(x+ Y+ [x=) + (-2 + (- %]

13.1fx + y + z=0, show that x* +)* + 2> = 3xyz.
14. Without actually calculating the cubes, find the value of each of the following:

(1) (=12 +(7) + (5)
(ii) (28)° + (—15)* + (~13)’

15. Give possible expressions for the length and breadth of each of the following rectangles,

in which their areas are given:

Area ;| 25a* —35a+ 12 Area] 357+ 13y-12
(i) (i)
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4. Bob &I $BD DERWEBerro SPIRPAOD JJB0SE.
(1) (x +2y+4z) (i) 2x —y + z)? (iii)  (2x+ 3y + 2z)
(iv) Ba—Tb - c)? V) (2x+ 5y =32 (vi) Ba ~Lp+ 1}

5. =o8ezrosrene QifRoSo’k.
(1) 4x*+ 9% + 1622 + 12xy — 24yz — 16xz
(i) 2x2+ 3% + 82 — 22 xy + 42yz — 8xz
6. (80 o NBedrHoSt TeaDod.

() x+ 17 (i) 2a—3b) (iii) Bxﬂf (iv) [x_gyf

7. 1808 o $BS BBRaBBEToD SIBPA0D KeBoSod:

(1) (99)° (i1) (102)* (iii) (998)°
8. 8od 7 se8eroseenre DeFBoLol :
(1) 8a* + b* + 12a°b + 6ab* (i) 8a* — b* — 12a°b + 6ab?

(iii) 27 — 125a° — 135a + 225> (iv) 64a’® — 27b° — 144a*b + 108ab?
W) 27p' = 51z = S0 + 50
9. MBrol: (DX° +)=(x+y) (P —xy+)?) (i) ¥ =) =(x-y) (& +xp+)°)
10. Bod 3R sedegroseent DFRoNod:
(1) 27 +1252° (i) 64m’—343n’
[BoiSiS 1 (58 9 eSefol ]
11. se8eromenre QgsRosod.: 27x° + VP + 28 — 9xyz

12. ¥* +y*+ 22— 3xyz = %(x+ Y+ [(x= )+ (y -2 + (2 - )7 & $BE08.
13. x +ty+z=0oonz x°+)°+2=3xyz @ SH08.

14, 585 Kead BovBowes (Bod shmre Dendedy EfPKSod.

(i) (12) +(7) + (5)
(11)(28)° + (—15)* + (-13)°
15. 806 awas ég L& S0 SPBOre T°& PED), Fen)ed DI Jrdre Teabod.

Szeego: |25a° —35a+ 12 Szeego: | 357+ 13y —12
(i) (i)




84

POLYNOMIALS

16. What are the possible expressions for the dimensions of the cuboids whose volumes are
given below?

Volume ;| 3x* — 12x Volume | 12ky* + 8ky — 20k

(@) (i)

2.6 Summary

In this chapter, you have studied the following points:

1.

ol A G o

10.

11.
12.
13.
14.

A polynomial p(x) in one variable x is an algebraic expression in x of the form

px)=ax'+a x"'+.. . +ax’+tax+ta,

wherea, a,a,, ..., a areconstantsanda # 0.

a,a, a, ..., a arerespectively the coefficients of x°, x, x*, . . ., x", and n is called the
degree of the polynomial. Each of a x",a_ x", ..., a,, witha _# 0, is called a term of the
polynomial p(x).

A polynomial of one term is called a monomial.

A polynomial of two terms is called a binomial.

A polynomial of three terms is called a trinomial.

A polynomial of degree one is called a linear polynomial.

A polynomial of degree two is called a quadratic polynomial.
A polynomial of degree three is called a cubic polynomial.

A real number ‘a’ is a zero of a polynomial p(x) if p(a) = 0. In this case, a is also called a
root of the equation p(x) = 0.

Every linear polynomial in one variable has a unique zero, a non-zero constant polynomial
has no zero, and every real number is a zero of the zero polynomial.

Factor Theorem : x — a is a factor of the polynomial p(x), if p(a) = 0. Also, if x —a is a
factor of p(x), then p(a) = 0.

(x+ty+zP=x2+y*+z2+2xy + 2yz + 2zx

(c+p) =27+ + 3xy(x +y)

(X =y =x' =y =3x(x — )

X¥+y +2 -3xyz=x+y+z)(*+y +z2—xy—yz—zx)



250HBoe 85

16. $ob u528S ég){pam@ H0358X7e90 BERBorT el Soded @IS ST Trabod.

HodH8Smea0: | 3x2—12x o8 es0 1| 12ky* + 8ky — 20k
(@) (ii)

2.6 JTeo¥o :
& prgeHod® (Bob RAsre StyRao.

1.

® NS n kWD

10.

11.
12.
13.
14.

DE SET8 X & 1S BBSres wuHd Hario p(x),

pX)=ax'+a x"'+.. . +ax tax+a, 5508 &otnod.

9.
208&° a, a,,a, ..., a o doroseen, a, # 0
a,a,a,...aooHx’xx,. . ., X GuE) /Heseeotro. N D Vbl H0re0 ©otro.
ax’,a  x", .. a o adund @) Sueeotro.

28 a8 HB0 Ko aFVHO DEHG oero.

BotH Hore Ko DTVHO BINE @oero.

Q00eE DTPe K0 TVNO (BHE ©otro.

HB5TE0 8B Ko 5VHEY BPH 2FVHG wotro.

B°ea0 BoXT Ko 2TVIR DT dTVHE Wotro.

HBK7e90 Koo Ko 2STVNAY 0d TVH8 ®oero.

P(x) 93 250568 BT 5755 Yogg a p(a) =0 ©and adH ad0Hd p(x) = 0 @) g Dend
©O0LI0.

DE $50°8 EORS (8 B D68 By Deod ABEOrP Gotnod. Eragss QBTBE @xsT0H6 S
Dendd ABIVO0NL. %Jvzé?g DSTVHHE (H TPRND0 a8 %’m@o ©H&ok.

s8e08 drpodo: p(a) = 0 eandHd p(x) oF bt X —a o0 SBErosinn®Hod. eon
P(x)& x — a o8 s8erodo wond p(a) =0 ©H&Hob.

(x+y+zP=x*+)y*+z22+2xy + 2yz + 2zx

(cFp) =2+ + 3xy(x +y)

(x =y =x' =y = 3xp(x —y)

XY+ -3xyz=x+y+z)(x¥*+)y*+z22—xy—yz—zx)
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COORDINATE GEOMETRY
I

0962CHO3

CHAPTER 3

What’s the good of Mercator’s North Poles and Equators, Tropics, Zones and Meridian Lines?’

So the Bellman would cry; and crew would reply © They are merely conventional signs!’

LEWIS CARROLL, The Hunting of the Snark

3.1 Introduction

You have already studied how to locate a point on a number line. You also know how to describe

the position of a point on the line. There are many other situations, in which to find a point we

are required to describe its position with reference to more than one line. For example, consider

the following situations:

L. In Fig. 3.1, there is a main road running in the East-
West direction and streets with numbering from West to East.
Also, on each street, house numbers are marked. To look for
a friend’s house here, is it enough to know only one reference
point? For instance, if we only know that she lives on Street
2, will we be able to find her house easily? Not as easily asy
when we know two pieces of information about it, namely,
the number of the street on which it is situated, and the house
number. If we want to reach the house which is situated in the
2" street and has the number 5, first of all we would identify
the 2™ street and then the house numbered 5 on it. In Fig. 3.1,
H shows the location of the house. Similarly, P shows the
location of the house corresponding to Street number 7 and
House number 4.

Street 1

—_ N W B W

Street 3

—_— N W B W

Street 5

— N W B W

Street 7

o

—_— N W B W

= Street 2

N A W N~

Street 4

Dn B W N =

Street 6

N B~ W N~

Fig. 3.1

Street 8

D A W N =
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I1. Suppose you put a dot on a sheet of paper [Fig.3.2 (a)]. If we ask you to tell us the
position of the dot on the paper, how will you do this? Perhaps you will try in some such manner:
“The dot is in the upper half of the paper”, or “It is near the left edge of the paper”, or “It is very
near the left hand upper corner of the sheet”. Do any of these statements fix the position of the
dot precisely? No! But, if you say “ The dot is nearly 5 cm away from the left edge of the paper”,
it helps to give some idea but still does not fix the position of the dot. A little thought might
enable you to say that the dot is also at a distance of 9 cm above the bottom line. We now know
exactly where the dot is!

9cm

(a) (b)
Fig. 3.2

For this purpose, we fixed the position of the dot by specifying its distances from two fixed
lines, the left edge of the paper and the bottom line of the paper [Fig.3.2 (b)]. In other words, we
need two independent informations for finding the position of the dot.

Now, perform the following classroom activity known as ‘Seating Plan’.

Activity 1 (Seating Plan) : Draw a plan of the seating in your classroom, pushing all the desks
together. Represent each desk by a square. In each square, write the name of the student occupying
the desk, which the square represents. Position of each student in the classroom is described
precisely by using two independent informations:

(1) the column in which she or he sits,
(i1)the row in which she or he sits.

If you are sitting on the desk lying in the 5" column and 3™ row (represented by the shaded
square in Fig. 3.3), your position could be written as (5, 3), first writing the column number, and
then the row number. Is this the same as (3, 5)? Write down the names and positions of other
students in your class. For example, if Sonia is sitting in the 4™ column and 15 row, write S(4,1).
The teacher’s desk is not part of your seating plan. We are treating the teacher just as an observer.
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7 T shows teacher’s desk
6 S shows Sonia’s desk
5
Rows 4

3
2
1 2°

1 2 3 4 5 6 7 8 9 10

Columns

Fig. 3.3

In the discussion above, you observe that position of any object lying in a plane can be
represented with the help of two perpendicular lines. In case of ‘dot’, we require distance of the
dot from bottom line as well as from left edge of the paper. In case of seating plan, we require
the number of the column and that of the row. This simple idea has far reaching consequences,
and has given rise to a very important branch of Mathematics known as Coordinate Geometry.
In this chapter, we aim to introduce some basic concepts of coordinate geometry. You will
study more about these in your higher classes. This study was initially developed by the French
philosopher and mathematician René Déscartes.

René Déscartes, the great French mathematician of the
seventeenth century, liked to lie in bed and think! One day,
when resting in bed, he solved the problem of describing the
position of a point in a plane. His method was a development
of the older idea of latitude and longitude. In honour of
Déscartes, the system used for describing the position of a

René Déscartes (1596 -1650)

point in a plane is also known as the Cartesian system. o
ig. 3.

EXERCISE 3.1
1. How will you describe the position of a table lamp on your study table to another person?

2. (Street Plan) : A city has two main roads which cross each other at the centre of the
city. These two roads are along the North-South direction and East-West direction. All
the other streets of the city run parallel to these roads and are 200 m apart. There are 5

streets in each direction. Using 1cm =200 m, draw a model of the city on your notebook.
Represent the roads/streets by single lines.
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There are many cross- streets in your model. A particular cross-street is made by
two streets, one running in the North - South direction and another in the East - West
direction. Each cross street is referred to in the following manner : If the 2™ street
running in the North - South direction and 5" in the East - West direction meet at some
crossing, then we will call this cross-street (2, 5). Using this convention, find:

(1) how many cross - streets can be referred to as (4, 3).

(ii)how many cross - streets can be referred to as (3, 4).

3.2 Cartesian System

You have studied the number line in the chapter on ‘Number System’. On the number line,
distances from a fixed point are marked in equal units positively in one direction and negatively
in the other. The point from which the distances are marked is called the origin. We use the
number line to represent the numbers by marking points on a line at equal distances. If one unit
distance represents the number “1°, then 3 units distance represents the number ‘3’, ‘0’ being at
the origin. The point in the positive direction at a distance » from the origin represents the
number 7 The point in the negative direction at a distance » from the origin represents the
number —7. Locations of different numbers on the number line are shown in Fig. 3.5.

One unit One unit
distance distance
i Origin ﬂ(\
-5 4 3 2 -1 0 1 2 3 4 5
Fig. 3.5

Descartes invented the idea of placing two such lines perpendicular to each other on a plane,
and locating points on the plane by referring them to these lines. The perpendicular lines may
be in any direction such as in Fig.3.6. But, when we choose

(a) (b) (c)
Fig. 3.6
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these two lines to locate a point in a plane in this chapter, one line will be
horizontal and the other will be vertical, as in Fig. 3.6(¢).

These lines are actually obtained as follows : Take two number lines, calling
them X’X and Y'Y. Place X'X horizontal [as in Fig. 3.7(a)] and write the numbers
on it just as written on the number line. We do the same thing with Y'Y except 4.
that Y’Y is vertical, not horizontal [Fig. 3.7(b)]. 3l
74
11
01 Origin
1l
Y
ey
_4}
Origin
TS 43 2 10 1 2 3 4 s v
(a) (b)
Fig. 3.7
Combine both the lines in such a way that the
two lines cross each other at their zeroes, or origins Y
(Fig. 3.8). The horizontal line X’X is called the x - B
axis and the vertical line YY" is called the y - axis. :
The point where XX and Y'Y cross is called the ;
origin, and is denoted by O. Since the positive Negative x-axis ! Positive x -axis
numbers lie on the directions OX and OY, OX an(i( —6-5-4-3-2-19 1 2 3 4 5 6 *
OY are called the positive directions of the x - :i
axis and the y - axis, respectively. Similarly, OX” —4
and OY” are called the negative directions of the _ ' ’
x - axis and the y - axis, respectively. e v’
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You observe that the axes (plural of the word ‘axis’) divide
the plane into four parts. These four parts are called the guadrants
(one fourth part), numbered I, I1, IIl and I'V anticlockwise from
OX (see Fig.3.9). So, the plane consists of the axes and these
quadrants. We call the plane, the Cartesian plane, or the
coordinate plane, or the xy-plane. The axes are called the
coordinate axes.

Quadrant 11

Quadrant I

Quadrant 111

o

Quadrant IV

Fig. 3.9

Now, let us see why this system is so basic to mathematics, and how it is useful. Consider
the following diagram where the axes are drawn on graph paper. Let us see the distances of the
points P and Q from the axes. For this, we draw perpendiculars PM on the x - axis and PN on the
y - axis. Similarly, we draw perpendiculars QR and QS as shown in Fig. 3.10.

Y
/
4
SN P
2
s 1
i = 7574—372-1(? EEE R >X
e
S
@ g
A4
T
Fig.3.10

You find that

(1) The perpendicular distance of the point P from the y - axis measured along the positive

direction of the x - axis is PN = OM = 4 units.

(11) The perpendicular distance of the point P from the x - axis measured along the positive

direction of the y - axis is PM = ON = 3 units.
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(111) The perpendicular distance of the point Q from the y - axis measured along the negative
direction of the x - axis is OR = SQ = 6 units.

(iv) The perpendicular distance of the point Q from the x - axis measured along the negative
direction of the y - axis is OS = RQ =2 units.

Now, using these distances, how can we describe the points so that there is no confusion?
We write the coordinates of a point, using the following conventions:

(1) The x - coordinate of a point is its perpendicular distance from the y - axis measured
along the x -axis (positive along the positive direction of the x - axis and negative along
the negative direction of the x - axis). For the point P, it is + 4 and for Q, it is— 6. The x
- coordinate is also called the abscissa.

(i1) The y - coordinate of a point is its perpendicular distance from the x - axis measured
along the y - axis (positive along the positive direction of the y - axis and negative along
the negative direction of the y - axis). For the point P, it is + 3 and for Q, it is—2. The y
- coordinate is also called the ordinate.

(111) In stating the coordinates of a point in the coordinate plane, the x - coordinate comes
first, and then the y - coordinate. We place the coordinates in brackets.

Hence, the coordinates of P are (4, 3) and the coordinates of Q are (— 6, — 2).

Note that the coordinates describe a point in the plane uniguely. (3, 4) is not the same as
(4, 3).

Example 1 : See Fig. 3.11 and complete the following statements:

(1) The abscissa and the ordinate of the point B are =~ and | respectively.
Hence, the coordinates of Bare (_ , ).
(i1) The x-coordinate and the y-coordinate of the point M are ~ and |, respectively.

Hence, the coordinates of Mare (_ , ).

(ii1) The x-coordinate and the y-coordinate of the point Lare =~ and | respectively.
Hence, the coordinates of Lare (_ , ).
(iv) The x-coordinate and the y-coordinate of the point Sare =~ and |, respectively.

Hence, the coordinatesof Sare (_ , ).
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Fig. 3.11

Solution: (i) Since the distance of the point B from the y - axis is 4 units, the
x - coordinate or abscissa of the point B is 4. The distance of the point B from the
x - axis is 3 units; therefore, the y - coordinate, i.e., the ordinate, of the point B is 3. Hence, the

coordinates of the point B are (4, 3).
Asin (i) above :

(i1) The x - coordinate and the y - coordinate of the point M are —3 and 4, respectively. Hence,

the coordinates of the point M are (-3, 4).

(iii) The x - coordinate and the y - coordinate of the point L. are —5 and — 4, respectively. Hence,

the coordinates of the point L are (-5, — 4).

(iv) The x - coordinate and the y- coordinate of the point S are 3 and — 4, respectively. Hence,

the coordinates of the point S are (3, — 4).
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Example 2 : Write the coordinates of the points marked
on the axes in Fig. 3.12.

S

Solution : You can see that : B

(1) The point A is at a distance of + 4 units from the y -axis

™
s>

and at a distance zero from the x - axis. Therefore, the X <=5

Wi
S}
w

x - coordinate of A is 4 and the y - coordinate is 0.
Hence, the coordinates of A are (4, 0).

(i1) The coordinates of B are (0, 3). Why? )
(i11) The coordinates of C are (— 5, 0). Why?

|
noA W =0 —~ U

<

(iv) The coordinates of D are (0, — 4). Why?
2 Fig. 3.12
(v) The coordinates of E are (5’ 0) . Why?

Since every point on the x - axis has no distance (zero distance) from the x - axis, therefore,
the y - coordinate of every point lying on the x - axis is always zero. Thus, the coordinates of any
point on the x - axis are of the form (x, 0), where x is the distance of the point from the y - axis.
Similarly, the coordinates of any point on the y - axis are of the form (0, y), where y is the
distance of the point from the x - axis. Why?

What are the coordinates of the origin O? It has zero distance from both the axes so that its
abscissa and ordinate are both zero. Therefore, the coordinates of the origin are (0, 0).

In the examples above, you may have observed the following relationship between the signs
of the coordinates of a point and the quadrant of a point in which it lies.
(1) If a point is in the 1st quadrant, then the point will be in the form (+, +), since the 1st

quadrant is enclosed by the positive x - axis and the positive y - axis.

(i1) If a point is in the 2nd quadrant, then the point will be in the form (-, +), since the 2nd

quadrant is enclosed by the negative x - axis and the positive y - axis.

(iii) If a point is in the 3rd quadrant, then the point will be in the form (-, —), since the 3rd

quadrant is enclosed by the negative x - axis and the negative y - axis.

(iv) If a point is in the 4th quadrant, then the point will be in the form (+, —), since the 4th
quadrant is enclosed by the positive x - axis and the negative y - axis
(see Fig. 3.13).
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Fig. 3.13

Remark : The system we have discussed above for describing a point in a plane is only a
convention, which is accepted all over the world. The system could also have been, for example,
the ordinate first, and the abscissa second. However, the whole world sticks to the system we
have described to avoid any confusion.

EXERCISE 3.2

1. Write the answer of each of the following questions:

(1) What is the name of horizontal and the vertical lines drawn to determine the position
of any point in the Cartesian plane?

(i1) What is the name of each part of the plane formed by these two lines?
(111)  Write the name of the point where these two lines intersect.
2. See Fig.3.14, and write the following:
(1) The coordinates of B.
(11) The coordinates of C.
(i11)  The point identified by the coordinates (-3, —5).
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(iv)  The point identified by the coordinates (2, — 4).
(v)  The abscissa of the point D.

(vi)  The ordinate of the point H.

(vii) The coordinates of the point L.

(viii) The coordinates of the point M.

3.3 Summary

In this chapter, you have studied the following points :
1. To locate the position of an object or a point in a plane, we require two perpendicular lines.
One of them is horizontal, and the other is vertical.

2. Theplane is called the Cartesian, or coordinate plane and the lines are called the coordinate
axes.

3. The horizontal line is called the x -axis, and the vertical line is called the y - axis.
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4. The coordinate axes divide the plane into four parts called quadrants.

5. The point of intersection of the axes is called the origin.

6. The distance of a point from the y - axis is called its x-coordinate, or abscissa, and the
distance of the point from the x-axis is called its y-coordinate, or ordinate.

7. Ifthe abscissa of a point is x and the ordinate is y, then (x, y) are called the coordinates of
the point.

8. The coordinates of a point on the x-axis are of the form (x, 0) and that of the point on the y-
axis are (0, y).

9. The coordinates of the origin are (0, 0).

10. The coordinates of a point are of the form (+, +) in the first quadrant, (—, +) in the second
quadrant, (—, —) in the third quadrant and (+, —) in the fourth quadrant, where + denotes a
positive real number and — denotes a negative real number.

11. If x # y, then (x, y) # (y, x), and (x, y) = (3, x), if x = y.
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CHAPTER 4

LINEAR EQUATIONS IN TWO VARIABLES
I

The principal use of the Analytic Art is to bring Mathematical Problems to Equations
and to exhibit those Equations in the most simple terms that can be.

—Edmund Halley

4.1 Introduction

In earlier classes, you have studied linear equations in one variable. Can you write down a linear

equation in one variable? You may say thatx +1=0,x+ 2 =0and 2y + /3 =0 are
examples of linear equations in one variable. You also know that such equations have a unique
(i.e., one and only one) solution. You may also remember how to represent the solution on a
number line. In this chapter, the knowledge of linear equations in one variable shall be recalled
and extended to that of two variables. You will be considering questions like: Does a linear
equation in two variables have a solution? If yes, is it unique? What does the solution look like
on the Cartesian plane? You shall also use the concepts you studied in Chapter 3 to answer these
questions.

4.2 Linear Equations

Let us first recall what you have studied so far. Consider the following equation:
2x+5=0

Its solution, i.e., the root of the equation, is —% . This can be represented on the number line

as shown below:
Root
K
/
A
T4 3592 1 0 1 2 3 4

2 Fig. 4.1



Bok B8 TrdHed® Thadh Hinsseren 111

LIU1E3

oggeho 4

Both $ETrHes TDah Bsberen
I

DFieegE & A (DS SIArN0 MBS Fshifjeoid SLbsTare WrbosE Sibdorsto oa &
BDETereiD> o Fote Jored® (35805250,

- Aol 5

4.1 H0NS%0 :

S0 Bob BB D 1550-88° B BaEBETLS erEediso B, S0 DY $60-3E° T BEELereS
oadeTe? X+ 1=0,x + 2 =0 5086 2y + 3 =0 0059 8 $560086° B $8u8demed
GarSSnr wE%0trs. Bero BDH B$wESered OBE (unique) (2828) Dend Jgdm
G0ENOBRO 0B Bevd. ALK VogrTeR der Krdomrd® Hire b HY) BEDD). 8 wgradod® DY
560786 BHH HEGerDH 28 BEYEFR B Totd SETrHodH JBF0. Both SET-HOS® TP
DE0Eered S Gotnotr? HH wanS, B0 JBEST? SRRADS B0o® JBS der Gotnod? Hod
BHot D HBIOFB. & BEHeH SSrrTrer BXWRS 35 wrriaod® i T erdben Eree
SOOI

4.2 3DcH Bo8Semen:

Dt BOBHBH Sy NI 115 BEod. Bod Bhod $5BBeeR) HO8D0BOA.
2x+5=0

B8 5 evdre HBBeso g w0 —% ©H&0d. HID Qdogrg 'c§gp:a_) Bod DForr LSRN,

v



112 LiNEAR EQUATIONS IN TWO VARIABLES

While solving an equation, you must always keep the following points in mind:

The solution of a linear equation is not affected when:

(1) the same number is added to (or subtracted from) both the sides of the equation.
(11) you multiply or divide both the sides of the equation by the same non-zero number.
Let us now consider the following situation:

In a One-day International Cricket match between India and Sri Lanka played in Nagpur, two
Indian batsmen together scored 176 runs. Express this information in the form of an equation.

Here, you can see that the score of neither of them is known, i.e., there are two unknown
quantities. Let us use x and y to denote them. So, the number of runs scored by one of the
batsmen is x, and the number of runs scored by the other is y. We know that

x+y=176,
which is the required equation.

This is an example of a linear equation in two variables. It is customary to denote the variables
in such equations by x and y, but other letters may also be used. Some examples of linear
equations in two variables are:

1.2s+3t=5,p+4g="7,mu+5v=9and 3= V2 x—7y.
Note that you can put these equations in the form 1.2s +37—5=0,p+4qg—7=0, tu + 5v
—9=0and v2x -7y -3 =0, respectively.

So, any equation which can be put in the form ax + by + ¢ = 0, where a, b and c are real
numbers, and a and b are not both zero, is called a linear equation in two variables. This
means that you can think of many many such equations.

Example 1 : Write each of the following equations in the form ax + by + ¢ = 0 and indicate the
values of a, b and ¢ in each case:
(i) 2x +3y=4.37 (i))x—4= 3y (i) 4 = 5x - 3y (iv)2x=y
Solution : (1) 2x+ 3y =4.37 can be written as 2x + 3y —4.37=0. Herea=2, b =3 and
c=—4.37.
(ii) The equation x —4 = /3y can be written as x — \3y—4=0. Herea=1,
b=—3 andc=—4.
(111) The equation 4 = 5x — 3y can be written as 5x —3y—4=0. Herea=15,b

=—-3 and ¢ =—4. Do you agree that it can also be written as —5x + 3y + 4
=0 ? In this case a=-5, b =3 and c = 4.
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(iv) The equation 2x = y can be written as 2x —y + 0 = 0. Here a = 2, b = -1 and
c=0.

Equations of the type ax + b= 0 are also examples of linear equations in two variables because
they can be expressed as

ax+0y+b=0
For example, 4 — 3x = 0 can be written as —3x + 0.y + 4 =0.

Example 2 : Write each of the following as an equation in two variables:

(i)x=-5 (i)y=2 (i) 2x =3 (iv) 5y =2
Solution :  (i)x=-5can be writtenas 1.x+0.y=-5,0r l.x+ 0.y +5=0.

(i) y=2canbe writtenas 0.x + 1.y=2, or O.x+1y—-2=0.

(ii1) 2x = 3 can be written as 2x + 0.y — 3 =0.

(iv) 5y =2 can be written as 0.x + 5y —2 = 0.

EXERCISE 4.1

1. The cost of anotebook is twice the cost of a pen. Write a linear equation in two variables
to represent this statement.

(Take the cost of a notebook to be T x and that of a pen to be I y).

2. Express the following linear equations in the form ax + by + ¢ = 0 and indicate the
values of a, b and ¢ in each case:

(i) 2x + 3y =935  (ii) x—%—10=0 (i) 2x+3y=6 (iv) x=3y

(V) 2x =5y (vi) 3x+2=0 (vi) y-2=0 (viii) 5=2x

4.3 Solution of a Linear Equation

You have seen that every linear equation in one variable has a unique solution. What can you say
about the solution of a linear equation involving two variables? As there are two variables in the
equation, a solution means a pair of values, one for x and one for y which satisfy the given
equation. Let us consider the equation 2x + 3y = 12. Here, x =3 and y =2 is a solution because
when you substitute x =3 and y =2 in the equation above, you find that
2x+3y=2x3)+(3x2)=12

This solution is written as an ordered pair (3, 2), first writing the value for x and then the

value for y. Similarly, (0, 4) is also a solution for the equation above.
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On the other hand, (1, 4) is not a solution of 2x + 3y = 12, because on putting
x=1and y=4we get 2x + 3y =14, which is not 12. Note that (0, 4) is a solution but not (4, 0).

You have seen at least two solutions for 2x + 3y =12, 1.e., (3, 2) and (0, 4). Can you find any
other solution? Do you agree that (6, 0) is another solution? Verify the same. In fact, we can get
many many solutions in the following way. Pick a value of your choice for x (say x =2) in 2x +
3y=12. Then the equation reduces to 4 + 3y =12, which is a linear equation in one variable. On

. . 8 8) . . e .
solving this, you get y = 3 So &2, —J is another solution of 2x + 3y =12. Sérzmlarly, choosing
x =-15, you find that the equation g comes —10 + 3y = 12. This gives y = 3 So, (;5’ %) is
another solution of 2x + 3y = 12. So there is no end to different solutions of a linear equation

in two variables. That is, a linear equation in two variables has infinitely many solutions.

Example 3 : Find four different solutions of the equation x + 2y = 6.

Solution : By inspection, x =2, y = 2 is a solution because forx =2,y =2
x+2y=2+4=6

Now, let us choose x = 0. With this value of x, the given equation reduces to 2y = 6 which has

the unique solution y =3. So x =0, y = 3 is also a solution of x + 2y = 6. Similarly, taking y =

0, the given equation reduces tox = 6. So, x =6, y= 0 is a solution of x + 2y = 6 as well. Finally,

let us take y = 1. The given equation now reduces to x + 2 = 6, whose solution is given by x = 4.

Therefore, (4, 1) is also a solution of the given equation. So four of the infinitely many solutions
ofthe given equation are:

(2,2),(0,3),(6,0) and (4, 1).

Remark : Note that an easy way of getting a solution is to take x = 0 and get the corresponding
value of y. Similarly, we can put y = 0 and obtain the corresponding value of x.

Example 4 : Find two solutions for each of the following equations:

(1) 4x+3y=12

(i)2x+5y=0

(i) 3y+4=0
Solution : (i) Taking x = 0, we get 3y = 12, i.e., y = 4. So, (0, 4) is a solution of the given
equation. Similarly, by taking y =0, we get x = 3. Thus, (3, 0) is also a solution.
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(11) Taking x =0, we get 5y =0, i.e., y=0. So (0, 0) is a solution of the given equation. Now, if
you take y = 0, you again get (0, 0) as a solution, which is the same as the earlier one. To get

. . .2
another solution, take x = 1, say. Then you can check that the corresponding value of y is s

So (1, —%) is another solution of 2x + 5y = 0.

(111) Writing the equation 3y +4 =0as 0.x + 3y +4 =0, you will find that y = -3 for any value

of x. Thus, two solutions can be given as (0, —%) and (1, —gJ .

EXERCISE 4.2
1. Which one of'the following options is true, and why?
y=23x+5 has
(1) aunique solution, (i) only two solutions,  (ii1) infinitely many solutions
2. Write four solutions for each of the following equations:
() 2x+y=7 (i)mx+y=9 (i) x=4y
3. Check which of'the following are solutions of the equation x — 2y =4 and which are not:
(1) (0, 2) (i) (2, 0) (iii) (4, 0)
(iv) (V2,42) W, 1)
4. Find the value of &, if x =2, y =1 is a solution of the equation 2x + 3y = k.

4.4 Summary

In this chapter, you have studied the following points:

1. Anequation of the form ax + by + ¢ =0, where a, b and ¢ are real numbers, such that @ and b
are not both zero, is called a linear equation in two variables.

2. A linear equation in two variables has infinitely many solutions.

3. Every point on the graph of a linear equation in two variables is a solution of the linear
equation. Moreover, every solution of the linear equation is a point on the graph of the linear
equation.
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INTRODUCTION TO EUCLID’S GEOMETRY
I

5.1 Introduction

The word ‘geometry’ comes form the Greek words ‘geo’, meaning the ‘earth’, and ‘metrein’,
meaning ‘to measure’. Geometry appears to have originated from the need for measuring
land. This branch of mathematics was studied in various forms in every ancient civilisation,
be it in Egypt, Babylonia, China, India, Greece, the Incas, etc. The people of these civilisations
faced several practical problems which required the development of geometry in various
ways.

For example, whenever the river Nile overflowed, it wiped
out the boundaries between the adjoining fields of different
land owners. After such flooding, these boundaries had to be
redrawn. For this purpose, the Egyptians developed a number
of geometric techniques and rules for calculating simple areas
and also for doing simple constructions. The knowledge of
geometry was also used by them for computing volumes of
granaries, and for constructing canals and pyramids. They also
knew the correct formula to find the volume of a truncated
pyramid (see Fig. 5.1).You know that a pyramid is a solid
figure, the base of which is a triangle, or square, or some other

polygon, and its side faces are triangles converging to a point

at the top. Fig. 5.1 : ATruncated Pyramid
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122 INTRODUCTION TO EUCLID’S GEOMETRY

In the Indian subcontinent, the excavations at Harappa and Mohenjo-Daro, etc. show that the
Indus Valley Civilisation (about 3000 BCE) made extensive use of geometry. It was a highly
organised society. The cities were highly developed and very well planned. For example, the
roads were parallel to each other and there was an underground drainage system. The houses
had many rooms of different types. This shows that the town dwellers were skilled in mensuration
and practical arithmetic. The bricks used for constructions were kiln fired and the ratio length
: breadth : thickness, of the bricks was foundtobe 4 :2: 1.

In ancient India, the Sulbasutras (800 BCE to 500 BCE) were the manuals of geometrical
constructions. The geometry of the Vedic period originated with the construction of altars (or
vedis) and fireplaces for performing Vedic rites. The location of the sacred fires had to be in
accordance to the clearly laid down instructions about their shapes and areas, if they were to be
effective instruments. Square and circular altars were used for household rituals, while altars
whose shapes were combinations of rectangles, triangles and trapeziums were required for
public worship. The sriyantra (given in the Atharvaveda) consists of nine interwoven isosceles
triangles. These triangles are arranged in such a way that they produce 43 subsidiary triangles.
Though accurate geometric methods were used for the constructions of altars, the principles
behind them were not discussed.

These examples show that geometry was being developed and applied everywhere in the
world. But this was happening in an unsystematic manner. What is interesting about these
developments of geometry in the ancient world is that they were passed on from one generation
to the next, either orally or through palm leaf messages, or by other ways. Also, we find that in
some civilisations like Babylonia, geometry remained a very practical oriented discipline, as
was the case in India and Rome. The geometry developed by Egyptians mainly consisted of the
statements of results. There were no general rules of the procedure. In fact, Babylonians and
Egyptians used geometry mostly for practical purposes and did very little to develop it as a
systematic science. But in civilisations like Greece, the emphasis was on the reasoning behind
why certain constructions work. The Greeks were interested in establishing the truth of the
statements they discovered using deductive reasoning (see Appendix 1).

A Greek mathematician, Thales is credited with giving the first known

proof. This proof was of the statement that a circle is bisected (i.e., cut into
two equal parts) by its diameter. One of Thales’ most famous pupils was
Pythagoras (572 BCE), whom you have heard about. Pythagoras and his group
discovered many geometric properties and developed the theory of geometry
to a great extent. This process continued till 300 BCE. At that time Euclid, a
teacher of mathematics at Alexandria in Egypt, collected

Thales
all the known work and arranged it in his famous treatise (640 BCE — 546 BCE)
Fig.5.2
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124 INTRODUCTION TO EUCLID’S GEOMETRY

called ‘Elements’. He divided the ‘Elements’ into thirteen chapters,
each called a book. These books influenced the whole world’s
understanding of geometry for generations to come.

In this chapter, we shall discuss Euclid’s approach to geometry
and shall try to link it with the present day geometry.

Euclid (325 BCE — 265 BCE)
5.2 Euclid’s Definitions, Axioms and Postulates Fig.5.3

The Greek mathematicians of Euclid’s time thought of geometry as an abstract model of the
world in which they lived. The notions of point, line, plane (or surface) and so on were derived
from what was seen around them. From studies of the space and solids in the space around
them, an abstract geometrical notion of a solid object was developed. A solid has shape, size,
position, and can be moved from one place to another. Its boundaries are called surfaces. They
separate one part of the space from another, and are said to have no thickness. The boundaries
of the surfaces are curves or straight lines. These lines end in points.

Consider the three steps from solids to points (solids-surfaces-lines-points). In each step
we lose one extension, also called a dimension. So, a solid has three dimensions, a surface has
two, a line has one and a point has none. Euclid summarised these statements as definitions. He
began his exposition by listing 23 definitions in Book 1 of the ‘Elements’. A few of them are

given below :
1. A point is that which has no part.
A line is breadthless length.
The ends of a line are points.
A straight line is a line which lies evenly with the points on itself.
A surface is that which has length and breadth only.

The edges of a surface are lines.

NS R

A plane surface is a surface which lies evenly with the straight lines on itself.

If you carefully study these definitions, you find that some of the terms like part, breadth,
length, evenly, etc. need to be further explained clearly. For example, consider his definition of
apoint. In this definition, ‘a part’ needs to be defined. Suppose if you define ‘a part’ to be that
which occupies ‘area’, again ‘an area’ needs to be defined. So, to define one thing, you need to
define many other things, and you may get a long chain of definitions without an end. For such
reasons, mathematicians agree to leave
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126 INTRODUCTION TO EUCLID’S GEOMETRY

some geometric terms undefined. However, we do have a intuitive feeling for the geometric
concept of a point than what the ‘definition’ above gives us. So, we represent a point as a dot,
even though a dot has some dimension.

A similar problem arises in Definition 2 above, since it refers to breadth and length, neither
of which has been defined. Because of this, a few terms are kept undefined while developing
any course of study. So, in geometry, we fake a point, a line and a plane (in Euclid's words a
plane surface) as undefined terms. The only thing is that we can represent them intuitively, or
explain them with the help of ‘physical models’.

Starting with his definitions, Euclid assumed certain properties, which were not to be proved.
These assumptions are actually ‘obvious universal truths’. He divided them into two types: axioms
and postulates. He used the term ‘postulate’ for the assumptions that were specific to geometry.
Common notions (often called axioms), on the other hand, were assumptions used throughout
mathematics and not specifically linked to geometry. For details about axioms and postulates,
refer to Appendix 1. Some of Euclid’s axioms, not in his order, are given below :

(1) Things which are equal to the same thing are equal to one another.

(2) If equals are added to equals, the wholes are equal.

(3) If equals are subtracted from equals, the remainders are equal.

(4) Things which coincide with one another are equal to one another.

(5) The whole is greater than the part.

(6) Things which are double of the same things are equal to one another.

(7) Things which are halves of the same things are equal to one another.

These ‘common notions’ refer to magnitudes of some kind. The first common notion could
be applied to plane figures. For example, if an area of a triangle equals the area of a rectangle
and the area of the rectangle equals that of a square, then the area of the triangle also equals the
area of the square.

Magnitudes of the same kind can be compared and added, but magnitudes of different kinds
cannot be compared. For example, a line cannot be compared to a rectangle, nor can an angle be
compared to a pentagon.

The 4th axiom given above seems to say that if two things are identical (that is, they are the
same), then they are equal. In other words, everything equals itself. It is the justification of the
principle of superposition. Axiom (5) gives us the definition of ‘greater than’. For example, if
a quantity B is a part of another quantity A, then A can be written as the sum of B and some third
quantity C. Symbolically, A > B means that there is some C such that A =B + C.
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Now let us discuss Euclid’s five postulates. They are :

Postulate 1 : 4 straight line may be drawn from any one point to any other point.

Note that this postulate tells us that at least one straight line passes through two distinct
points, but it does not say that there cannot be more than one such line. However, in his work,
Euclid has frequently assumed, without mentioning, that there is a unigue line joining two
distinct points. We state this result in the form of an axiom as follows:

Axiom 5.1 : Given two distinct points, there is a unique line that passes through them.

How many lines passing through P also pass through Q (see Fig. 5.4)? Only one, that is, the
line PQ. How many lines passing through Q also pass through P? Only one, that is, the line PQ.
Thus, the statement above is self-evident, and so is taken as an axiom.

N
7N

Postulate 2 : A terminated line can be produced indefinitely.

Fig.5.4

Note that what we call a line segment now-a-days is what Euclid called a terminated line. So,
according to the present day terms, the second postulate says that a line segment can be extended
on either side to form a line (see Fig. 5.5).

Fig. 5.5
Postulate 3 : A4 circle can be drawn with any centre and any radius.
Postulate 4 : All right angles are equal to one another.

Postulate 5 : If a straight line falling on two straight lines makes the interior angles on
the same side of it taken together less than two right angles, then the two straight lines, if
produced indefinitely, meet on that side on which the sum of angles is less than two right
angles.
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130 INTRODUCTION TO EUCLID’S GEOMETRY

For example, the line PQ in Fig. 5.6 falls on lines AB and CD
such that the sum of the interior angles 1 and 2 is less than 180° on
the left side of PQ. Therefore, the lines AB and CD will eventually
intersect on the left side of PQ.

Fig. 5.6

A brieflook at the five postulates brings to your notice that Postulate 5 is far more complex
than any other postulate. On the other hand, Postulates 1 through 4 are so simple and obvious
that these are taken as ‘self-evident truths’. However, it is not possible to prove them. So, these
statements are accepted without any proof (see Appendix 1). Because of its complexity, the
fifth postulate will be given more attention in the next section.

Now-a-days, ‘postulates’ and ‘axioms’ are terms that are used interchangeably and in the
same sense. ‘Postulate’ is actually a verb. When we say “let us postulate”, we mean, “let us make
some statement based on the observed phenomenon in the Universe”. Its truth/validity is checked
afterwards. If it is true, then it is accepted as a ‘Postulate’.

A system of axioms is called consistent (see Appendix 1), if it is impossible to deduce
from these axioms a statement that contradicts any axiom or previously proved statement. So,
when any system of axioms is given, it needs to be ensured that the system is consistent.

After Euclid stated his postulates and axioms, he used them to prove other results. Then
using these results, he proved some more results by applying deductive reasoning. The statements
that were proved are called propositions or theorems. Euclid deduced 465 propositions in a
logical chain using his axioms, postulates, definitions and theorems proved earlier in the chain.
In the next few chapters on geometry, you will be using these axioms to prove some theorems.

Now, let us see in the following examples how Euclid used his axioms and postulates for
proving some of the results:

Example 1 : IfA, B and C are three points on a line, and B lies between A and C
(see Fig. 5.7), then prove that AB+BC =AC.
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Solution : In the figure given above, AC coincides with AB + BC.

Also, Euclid’s Axiom (4) says that things which coincide with one another are equal to one
another. So, it can be deduced that

AB+BC= AC

Note that in this solution, it has been assumed that there is a unique line passing through two
points.

Example 2 : Prove that an equilateral triangle can be constructed on any given line segment.

Solution : In the statement above, a line segment of any length is given, say AB
[see Fig. 5.8(1)] C C

(1) (i1) (iii)

Fig. 5.8

Here, you need to do some construction. Using Euclid’s Postulate 3, you can draw a circle with
point A as the centre and AB as the radius [see Fig. 5.8(ii)]. Similarly, draw another circle with
point B as the centre and BA as the radius. The two circles meet at a point, say C. Now, draw the
line segments AC and BC to form A ABC [see Fig. 5.8 (iii)]

So, you have to prove that this triangle is equilateral, i.e., AB=AC=BC.
Now, AB = AC, since they are the radii of the same circle (D)
Similarly, AB= BC (Radii of the same circle) (2)

From these two facts, and Euclid’s axiom that things which are equal to the same thing are equal
to one another, you can conclude that AB=BC=AC.

So, A ABC is an equilateral triangle.

Note that here Euclid has assumed, without mentioning anywhere, that the two circles drawn
with centres A and B will meet each other at a point.

Now we prove a theorem, which is frequently used in different results:
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Theorem 5.1 : Two distinct lines cannot have more than one point in common.

Proof : Here we are given two lines / and m. We need to prove that they have only one point in
common.

For the time being, let us suppose that the two lines intersect in two distinct points, say P
and Q. So, you have two lines passing through two distinct points P and Q. But this assumption
clashes with the axiom that only one line can pass through two distinct points. So, the assumption
that we started with, that two lines can pass through two distinct points is wrong.

From this, what can we conclude? We are forced to conclude that two distinct lines cannot
have more than one point in common.

EXERCISES.1

1. Which of the following statements are true and which are false? Give reasons for your
answers.

(1) Only one line can pass through a single point.

(i1) There are an infinite number of lines which pass through two distinct points.
(111) A terminated line can be produced indefinitely on both the sides.

(iv)  Iftwo circles are equal, then their radii are equal.

(v) InFig.5.9,if AB=PQ and PQ=XY, then AB=XY.

Fig. 5.9

2. Give a definition for each of the following terms. Are there other terms that need to be
defined first? What are they, and how might you define them?

(1) parallel lines (i1) perpendicular lines (ii1)  line segment
(iv) radius of a circle (v) square
3. Consider two ‘postulates’ given below:

(1) Given any two distinct points A and B, there exists a third point C which is in between
AandB.

(i1) There exist at least three points that are not on the same line.

Do these postulates contain any undefined terms? Are these postulates consistent?
Do they follow from Euclid’s postulates? Explain.
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4. If a point C lies between two points A and B such that AC = BC, then prove that
AC= %AB. Explain by drawing the figure.

5. In Question 4, point C is called a mid-point of line segment AB. Prove that every line
segment has one and only one mid-point.

6. InFig.5.10,1f AC=BD, then prove that AB=CD.

B D
A C

Fig. 5.10

7. Why is Axiom 5, in the list of Euclid’s axioms, considered a ‘universal truth’? (Note
that the question is not about the fifth postulate.)

5.3 Summary

In this chapter, you have studied the following points:

1. Though Euclid defined a point, a line, and a plane, the definitions are not accepted by
mathematicians. Therefore, these terms are now taken as undefined.

2. Axioms or postulates are the assumptions which are obvious universal truths. They are not
proved.

3. Theorems are statements which are proved, using definitions, axioms, previously proved
statements and deductive reasoning.

4. Some of Euclid’s axioms were :
(1) Things which are equal to the same thing are equal to one another.
(2) If equals are added to equals, the wholes are equal.
(3) If equals are subtracted from equals, the remainders are equal.
(4) Things which coincide with one another are equal to one another.
(5) The whole is greater than the part.
(6) Things which are double of the same things are equal to one another.
(7) Things which are halves of the same things are equal to one another.
5. Euclid’s postulates were :
Postulate 1 : A straight line may be drawn from any one point to any other point.
Postulate 2 : A terminated line can be produced indefinitely.
Postulate 3 : A circle can be drawn with any centre and any radius.

Postulate 4 : All right angles are equal to one another.
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0962CH06

CHAPTER 6

LINES AND ANGLES
I

6.1 Introduction

In Chapter 5, you have studied that a minimum of two points are required to draw a line. You
have also studied some axioms and, with the help of these axioms, you proved some other
statements. In this chapter, you will study the properties of the angles formed when two lines
intersect each other, and also the properties of the angles formed when a line intersects two or
more parallel lines at distinct points. Further you will use these properties to prove some
statements using deductive reasoning (see Appendix 1). You have already verified these statements
through some activities in the earlier classes.

In your daily life, you see different types of angles formed between the edges of plane
surfaces. For making a similar kind of model using the plane surfaces, you need to have a
thorough knowledge of angles. For instance, suppose you want to make a model of a hut to keep
in the school exhibition using bamboo sticks. Imagine how you would make it? You would keep
some of the sticks parallel to each other, and some sticks would be kept slanted. Whenever an
architect has to draw a plan for a multistoried building, she has to draw intersecting lines and
parallel lines at different angles. Without the knowledge of the properties of these lines and
angles, do you think she can draw the layout of the building?

In science, you study the properties of light by drawing the ray diagrams.
For example, to study the refraction property of light when it enters from one medium to the
other medium, you use the properties of intersecting lines and parallel lines. When two or
more forces act on a body, you draw the diagram in which forces are represented by directed
line segments to study the net effect of the forces on the body. At that time, you need to know
the relation between the angles when the rays (or line segments) are parallel to or intersect
each other. To find the height of a tower or to find the distance of a ship from the light house,
one needs to know the angle formed between the horizontal and the line of sight. Plenty of
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other examples can be given where lines and angles are used. In the subsequent chapters of
geometry, you will be using these properties of lines and angles to deduce more and more
useful properties.

Let us first revise the terms and definitions related to lines and angles learnt in earlier
classes.

6.2 Basic Terms and Definitions

Recall that a part (or portion) of a line with two end points is called a line-segment and a part
of a line with one end point is called a ray. Note that the line segment AB is denoted by AB, and
its length is denoted by AB. The ray AB is denoted by AB , and a line is denoted by a5 . However,
we will not use these symbols, and will denote the line segment AB, ray AB, length AB and
line AB by the same symbol, AB. The meaning will be clear from the context. Sometimes small
letters /, m, n, etc. will be used to denote lines.

If three or more points lie on the same line, they are called collinear points; otherwise
they are called non-collinear points.

Recall that an angle is formed when two rays originate from the same end point. The rays
making an angle are called the arms of the angle and the end point is called the vertex of the
angle. You have studied different types of angles, such as acute angle, right angle, obtuse angle,
straight angle and reflex angle in earlier classes (see Fig. 6.1).

) z
\-*—
(i) acute angle : 0° <x <90° (i1) right angle : y =90° (iii) obtuse angle : 90° <z < 180°
s
L ,
(iv) straight angle : s = 180° (v) reflex angle : 180° << 360°

Fig. 6.1 : Types of Angles
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An acute angle measures between 0° and 90°, whereas a right angle is exactly equal to
90°. An angle greater than 90° but less than 180° is called an obtuse angle. Also, recall that a
straight angle is equal to 180°. An angle which is greater than 180° but less than 360° is called
a reflex angle. Further, two angles whose sum is 90° are called complementary angles, and

two angles whose sum is 180° are called supplementary angles.

You have also studied about adjacent angles in the

earlier classes (see Fig. 6.2). Two angles are adjacent, if

they have a common vertex, a common arm and their non-
common arms are on different sides of the common arm.
In Fig. 6.2, £ ABD and £ DBC are adjacent angles. Ray
BD is their common arm and point B is their common
vertex. Ray BA and ray BC are non common arms.
Moreover, when two angles are adjacent, then their sum is
always equal to the angle formed by the two non-common

arms. So, we can write
ZABC=ZABD+ ZDBC.

Note that £ ABC and £ ABD are not adjacent angles.
Why? Because their non-common arms BD and BC lie on
the same side of the common arm BA.

If the non-common arms BA and BC in
Fig. 6.2, form a line then it will look like Fig. 6.3. In this
case, Z ABD and £ DBC are called linear pair of angles.

You may also recall the vertically opposite angles
formed when two lines, say AB and CD, intersect each
other, say at the point O (see Fig. 6.4). There are two pairs
of vertically opposite angles.

One pair is ZAOD and ZBOC. Can you find the other
pair?

S
7

B C

Fig. 6.2 : Adjacent angles

A B

Fig. 6.3 : Linear pair of angles

Fig. 6.4 : Vertically opposite
angles
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6.3 Intersecting Lines and Non-intersecting Lines

Draw two different lines PQ and RS on a paper. You will see that you can draw them in two
different ways as shown in Fig. 6.5 (i) and Fig. 6.5 (ii).

v Q
R S
(i) Intersecting lines (i1) Non-intersecting (parallel) lines

Fig. 6.5 : Different ways of drawing two lines

Recall the notion of a line, that it extends indefinitely in both directions. Lines PQ and RS
in Fig. 6.5 (1) are intersecting lines and in Fig. 6.5 (ii) are parallel lines. Note that the lengths of
the common perpendiculars at different points on these parallel lines is the same. This equal
length is called the distance between two parallel lines.

6.4 Pairs of Angles

In Section 6.2, you have learnt the definitions of some of the C
pairs of angles such as complementary angles, supplementary
angles, adjacent angles, linear pair of angles, etc. Can you think
of some relations between these angles? Now, let us find out
the relation between the angles formed when a ray stands on a

line. Draw a figure in which a ray stands on a line as shown in A O B
Fig. 6.6. Name the line as AB and the ray as OC. What are the Fig. 6.6 : Linear pair of angles
angles formed at the point O? They are £ AOC, £ BOC and £

AOB.

Can we write £ AOC+ £ BOC =Z AOB? (1)
Yes! (Why? Refer to adjacent angles in Section 6.2)

What is the measure of £ AOB? Itis 180°. (Why?) (2)
From (1) and (2), can you say that £ AOC + ZBOC=180°? Yes! (Why?)

From the above discussion, we can state the following Axiom:
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Axiom 6.1 : If a ray stands on a line, then the sum of two adjacent angles so formed is 180°.

Recall that when the sum of two adjacent angles is 180°, then they are called a linear pair
of angles.

In Axiom 6.1, it is given that ‘a ray stands on a line’. From this ‘given’, we have concluded
that ‘the sum of two adjacent angles so formed is 180°’. Can we write Axiom 6.1 the other way?
That is, take the ‘conclusion’ of Axiom 6.1 as ‘given’ and the ‘given’ as the ‘conclusion’. So it
becomes:

(A) If the sum of two adjacent angles is 180°, then a ray stands on a line (that is, the non-
common arms form a line).

Now you see that the Axiom 6.1 and statement (A) are in a sense the reverse of each others.
We call each as converse of the other. We do not know whether the statement (A) is true or not.
Let us check. Draw adjacent angles of different measures as shown in Fig. 6.7. Keep the ruler
along one of the non-common arms in each case. Does the other non-common arm also lie
along the ruler?

60° 60

300 80

(1) (i)

125°
A o) 55° B

+
YHWHHIHH['HHIIHTUHIITHTUTHIHH[HHIHH‘[HHIHH[HH

(iii)

Fig. 6.7 : Adjacent angles with different measures
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You will find that only in Fig. 6.7 (iii), both the non-common arms lie along the ruler, that is,
points A, O and B lie on the same line and ray OC stands on it. Also see that £ AOC + £ COB =
125°+ 55°=180°. From this, you may conclude that statement (A) is true. So, you can state in
the form of an axiom as follows:

Axiom 6.2 : If the sum of two adjacent angles is 180°, then the non-common arms of the

angles form a line.
For obvious reasons, the two axioms above together is called the Linear Pair Axiom.
Let us now examine the case when two lines intersect each other.

Recall, from earlier classes, that when two lines intersect, the vertically opposite angles
are equal. Let us prove this result now. See Appendix 1 for the ingredients of a proof, and keep
those in mind while studying the proof given below.

Theorem 6.1 : If two lines intersect each other, then the vertically opposite angles are equal.

Proof : In the statement above, it is given that ‘two lines
intersect each other’. So, let AB and CD be two lines
intersecting at O as shown in Fig. 6.8. They lead to two
pairs of vertically opposite angles, namely,

(i) £ AOC and < BOD (ii) £ AOD and
~BOC Fig. 6.8 : Vertically opposite angles

We need to prove that £ AOC = £ BOD and L AOD =/

BOC.

Now, ray OA stands on line CD.

Therefore, Z AOC+ £ AOD = 180° (Linear pair axiom) (1)
Can we write Z AOD + £ BOD =180°? Yes! (Why?) (2)

From (1) and (2), we can write

ZAOC+ Z£AOD=2ZAOD+ £BOD
This implies that Z AOC=ZBOD (Refer Section 5.2, Axiom 3)
Similarly, it can be proved that ZAOD = ZBOC

Now, let us do some examples based on Linear Pair Axiom and Theorem 6.1.
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Example 1 : In Fig. 6.9, lines PQ and RS intersect each other at

point O. If ZPOR : £ ROQ =5 : 7, find all the angles.

Solution : £ POR +Z ROQ = 180°

(Linear pair of angles)
But ZPOR:ZROQ=5:7

(Given)

Therefore, Z POR = E x 180° =175°
Similarly, Z ROQ = B x 180° =105°
Now, Z POS = ZROQ = 105°
and Z S0Q = ZPOR = 75°

(Vertically opposite angles)

(Vertically opposite angles)

Example 2 : In Fig. 6.10, ray OS stands on a line POQ. Ray OR and ray OT are angle bisectors of £ POS
and Z SOQ, respectively. If £ POS =x, find £ ROT.

Solution : Ray OS stands on the line POQ.

Therefore, Z POS + £ SOQ = 180°
But, ZPOS =x
Therefore, x+ 2 S0Q = 180°

So, £ S0Q =180° —x

Now, ray OR bisects £ POS, therefore,

1
ZROS = x ZPOS
1 X
= — X = —
2 YT
. 1
Similarly, £80T =7 x £50Q
— — X (180° —x)
=90°- 2
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1
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Now, ZROT=~ZROS+ZSOT
= Y4900t
2 2
=90°
Example 3 : InFig. 6.11, OP, OQ, OR and OS are four rays.
Prove that £ POQ + £ QOR + £ SOR + £ POS =360°.

Solution : In Fig. 6.11, you need to produce any of the rays
OP, OQ, OR or OS backwards to a point. Let us produce ray
OQ backwards to a point T so that TOQ is a line (see Fig.
6.12).

Now, ray OP stands on line TOQ.
Therefore, ~ZTOP+_~/ZPOQ=180° (1)
(Linear pair axiom)

Similarly, ray OS stands on line TOQ.
Therefore, ZTOS+Z£SOQ=180° (2)
But ZS0Q=ZSOR+ZQOR
So, (2) becomes

ZTOS+ ZSOR+ ZQOR=180°
Now, adding (1) and (3), you get
ZTOP+ ZPOQ+ £ TOS+Z£SOR + £ QOR=360°
But ZTOP+Z£TOS= £ZPOS

Therefore, (4) becomes

ZPOQ+ZQOR+ZSOR+~/POS=360°

EXERCISE 6.1

1.In Fig. 6.13, lines AB and CD intersect at O. If
Z AOC + £ BOE = 70° and £ BOD = 40°, find
Z BOE andreflex £ COE.

(4
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S, (4) $08

ZPOQ + £ QOR + £ SOR + £ POS = 360°

©g5%0 6.1
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2. InFig. 6.14, lines XY and MN intersect at O. If
ZPOY=90%°anda:b=2:3,findc.

3. InFig. 6.15, Z PQR = £ PRQ, then prove that
ZPQS=/PRT.

4. InFig.6.16,ifx+y=w+z, then prove that AOB
isaline.

5. InFig.6.17,POQisaline. Ray OR is perpendicular
to line PQ. OS is another ray lying between rays
OP and OR. Prove that

1
ZROS=— (£QOS~ZPOS).

6. Itisgiventhat £ XYZ=64°and XY is produced
to point P. Draw a figure from the given
information. Ifray YQ bisects £ ZYP, find Z XYQ
and reflex £ QYP.

C
N
Fig. 6.14
p
s Q R T
Fig. 6.15

Fig. 6.17
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6.5 Lines Parallel to the Same Line

Iftwo lines are parallel to the same line, will they be parallel to each other? Let us check it. See
Fig. 6.18 in which line m || line / and line # || line /.

Let us draw a line ¢ transversal for the lines, /, m and n. It is given that
line m || line / and line 7 || line /.

Therefore, Z/1=22 and £L1=4L3 t
(Corresponding angles axiom) / ,\\\1

So, /2=/3(Why?) \‘\2

But £ 2 and Z 3 are corresponding angles and they are equal. m

Therefore, you can say that \\‘3

n
Linem || Line n \
(Converse of corresponding angles axiom) Fig. 6.18
This result can be stated in the form of the following theorem:
Theorem 6.6 : Lines which are parallel to the same line are parallel to each other.

Note : The property above can be extended to more than two lines also.

Now, let us solve some examples related to parallel lines.

Example 4 : InFig. 6.19,1fPQ || RS, ZMXQ=135°and ZMYR =40°, find £ XMY.

P X Q P X Q
~ L \J T
135° 135°
Cotrmmmmmmmmme e e >
M A M B
&l 400 T i i
R Y S R Y S
Fig. 6.19 Fig. 6.20

Solution : Here, we need to draw a line AB parallel to line PQ, through point M as shown in
Fig. 6.20. Now, AB || PQ and PQ || RS.
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Therefore, AB| RS (Why?)
Now, Z QXM+ £ XMB = 180°
(AB || PQ, Interior angles on the same side of the transversal XM)

But ZQXM=135°

So, 135°+ £ XMB = 180°

Therefore, ZXMB=45° (1)

Now, ZBMY=ZMYR (AB| RS, Alternate angles)

Therefore, ZBMY = 40° (2)

Adding (1) and (2), you get
ZXMB+ ZBMY = 45° + 40°
That is, ZXMY = 85°

Example 5 : Ifatransversal intersects two lines such that the bisectors of a pair of corresponding
angles are parallel, then prove that the two lines are parallel.

Solution : In Fig. 6.21, a transversal AD intersects two lines PQ and RS at points B and C
respectively. Ray BE is the bisector of £ ABQ and ray CG is the bisector of £ BCS;
and BE || CG.

We are to prove that PQ || RS. A’\P/]'5

It is given that ray BE is the bisector of ./ ABQ. : . -
Therefore, £ ABE= 5 £ ABQ 1) v
Similarly, ray CG is the bisector of £ BCS. R C\ 3
Therefore, / BCG = % /BCS 2) ’

But BE || CG and AD is the transversal.
Therefore, £ ABE=~/ZBCG

(Corresponding angles axiom) 3)
Substituting (1) and (2) in (3), you get
1 1
5 ZABQ= 5 ZBCS

That s, ZABQ= £ZBCS
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But, they are the corresponding angles formed by transversal AD with PQ and RS; and are equal.
Therefore, PQIJ RS

(Converse of corresponding angles axiom)

Example 6 : InFig. 6.22, AB || CD and CD || EF. Also EA L AB. If Z BEF =55°, find the values

ofx,yand z.

Solution :y + 55° = 180° .
AT < z E
(Interior angles on the same side of the -
tr 1ED D
ansversal ED) )y
Therefore, y=180°—55°=125° 5
X
Again xX=y 1F
(AB || CD, Corresponding angles axiom) Fig. 6.22

Therefore x=125°
Now, since AB || CD and CD || EF, therefore, AB || EF.
So, ZEAB+ ZFEA= 180° (Interior angles on the same

side of the transversal EA)

Therefore, 90° + z + 55° = 180°
Which gives z=35°
EXERCISE 6.2

1. InFig. 6.23,ifAB||CD,CD||[EFandy:z=3:7, find x.
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. InFig.6.24,ifAB || CD, EF L CD and £ GED =126°, find £ AGE, £ GEF and £ FGE.

AG F B,
C E D
Fig. 6.24

. InFig. 6.25,1fPQ || ST, £LPQR =110° and £ RST=130°, find £ QRS.

[Hint : Draw a line parallel to ST through point R.]
S T
P Q
110°
R

130°

Fig. 6.25

. InFig. 6.26,ifAB || CD, £ APQ=50°and £ PRD=127°, find x and y.

B

127°

C R D

Fig. 6.26

. InFig. 6.27,PQ and RS are two mirrors placed parallel to each other. An incident ray AB

strikes the mirror PQ at B, the reflected ray moves along the path BC and strikes the
mirror RS at C and again reflects back along CD. Prove that AB || CD.

P B Q
D

A
R C S
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Heévo. 6.25
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6.6 Summary

In this chapter, you have studied the following points:

1. Ifaray stands on a line, then the sum of the two adjacent angles so formed is 180° and vice-versa. This property is
called as the Linear pair axiom.
If two lines intersect each other, then the vertically opposite angles are equal.

Lines which are parallel to a given line are parallel to each other.
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APPENDIX 1

PROOFS IN MATHEMATICS
I

Al.1 Introduction

Suppose your family owns a plot of land and there is

no fencing around it. Your neighbour decides one day 1

to fence off his land. After he has fenced his land, you

discover that a part of your family’s land has been

enclosed by his fence. How will you prove to your //

neighbour that he has tried to encroach on your land?
Your first step may be to seek the help of the village
elders to sort out the difference in boundaries. But,
suppose opinion

is divided among the elders. Some feel you are right and others feel your neighbour is right.
What can you do? Your only option is to find a way of establishing your claim for the boundaries
of your land that is acceptable to all. For example, a government approved survey map of your
village can be used, if necessary in a court of law, to prove (claim) that you are correct and your
neighbour is wrong.

Let us look at another situation. Suppose your mother has paid the electricity bill of your
house for the month of August, 2005. The bill for September, 2005, however, claims that the
bill for August has not been paid. How will you disprove the claim made by the electricity
department? You will have to produce a receipt proving that your August bill has been paid.

You have just seen some examples that show that in our daily life we are often called upon
to prove that a certain statement or claim is true or false. However, we also accept many
statements without bothering to prove them. But, in mathematics we only accept a statement as
true or false (except for some axioms) if it has been proved to be so, according to the logic of
mathematics.
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In fact, proofs in mathematics have been in existence for thousands of years, and they are
central to any branch of mathematics. The first known proof'is believed to have been given by
the Greek philosopher and mathematician Thales. While mathematics was central to many ancient
civilisations like Mesopotamia, Egypt, China and India, there is no clear evidence that they used
proofs the way we do today.

In this chapter, we will look at what a statement is, what kind of reasoning is involved in
mathematics, and what a mathematical proof consists of.

Al.2 Mathematically Acceptable Statements

In this section, we shall try to explain the meaning of a mathematically acceptable statement. A
‘statement’ is a sentence which is not an order or an exclamatory sentence. And, of course,
a statement is not a question! For example,

“What is the colour of your hair?” is not a statement, it is a question.

“Please go and bring me some water.” is a request or an order, not a statement.
“What a marvellous sunset!” is an exclamatory remark, not a statement.
However, “The colour of your hair is black™ is a statement.

In general, statements can be one of the following:

e always true

e always false

e ambiguous

The word ‘ambiguous’ needs some explanation. There are two situations which make a
statement ambiguous. The first situation is when we cannot decide if the statement is always
true or always false. For example, “Tomorrow is Thursday” is ambiguous, since enough of a
context is not given to us to decide if the statement is true or false.

The second situation leading to ambiguity is when the statement is subjective, that is, it is
true for some people and not true for others. For example, “Dogs are intelligent” is ambiguous
because some people believe this is true and others do not.

Example 1 : State whether the following statements are always true, always false or ambiguous.
Justify your answers.

(1) There are 8 days in a week.
(ii) Itisraining here.

(i1i1) The sun sets in the west.
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(iv) Gauriisakind girl.

(v) The product of two odd integers is even.

(vi) The product of two even natural numbers is even.

Solution :

(1) This statement is always false, since there are 7 days in a week.

(i1) This statement is ambiguous, since it is not clear where ‘here’ is.

(111) This statement is always true. The sun sets in the west no matter where we live.

(iv) This statement is ambiguous, since it is subjective—Gauri may be kind to some and not to
others.

(v) This statement is always false. The product of two odd integers is always odd.

(vi) This statement is always true. However, to justify that it is true we need to do some work.
It will be proved in Section A1.4.

As mentioned before, in our daily life, we are not so careful about the validity of statements.
For example, suppose your friend tells you that in July it rains everyday in Manantavadi, Kerala.
In all probability, you will believe her, even though it may not have rained for a day or two in
July. Unless you are a lawyer, you will not argue with her!

As another example, consider statements we often \\\
make to each other like “it is very hot today”. We easily
accept such statements because we know the context even - .
though these statements are ambiguous. ‘It is very hot
today’ can mean different things to different people
because what is very hot for a person from Kumaon may

not be hot for a person from Chennai.

But a mathematical statement cannot be ambiguous. In mathematics, a statement is only
acceptable or valid, if it is either true or false. We say that a statement is true, if it is always
true otherwise it is called a false statement.

For example, 5 + 2 = 7 is always true, so ‘5 + 2 = 7’ is a true statement and
5+ 3 =7 1is a false statement.
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Example 2 : State whether the following statements are true or false:
(1)  The sum of'the interior angles of a triangle is 180°.

(i1) Every odd number greater than 1 is prime.

(111) For any real number x, 4x + x = 5x.

(iv) For every real number x, 2x > x.

(v) For every real number x, x*> x.

(vi) Ifaquadrilateral has all its sides equal, then it is a square.
Solution :

(1)  This statement is true. You have already proved this in Chapter 6.
(i1) This statement is false; for example, 9 is not a prime number.
(111) This statement is true.

(iv) This statement is false; for example, 2 x (—1) =-2, and — 2 is not greater than —1.

2] 42
(vi) This statement is false, since a rhombus has equal sides but need not be a square.

: : 1y 1 .
(v) This statement is false; for example, (—) =—_ and i 1s not greater than %

You might have noticed that to establish that a statement is not true according to mathematics,
all we need to do is to find one case or example where it breaks down. So in (i1), since 9 is not
a prime, it is an example that shows that the statement “Every odd number greater than 1 is
prime” is not true. Such an example, that counters a statement, is called a counter-example. We
shall discuss counter-examples in greater detail in Section A1.5.

You might have also noticed that while Statements (iv), (v) and (vi) are false, they can be
restated with some conditions in order to make them true.

Example 3 : Restate the following statements with appropriate conditions, so that they become
true statements.

(i) Forevery real number x, 2x > x.

(ii) For every real number x, x* > x.

(111) Ifyou divide a number by itself, you will always get 1.

(iv) The angle subtended by a chord of a circle at a point on the circle is 90°.

(v) [Ifaquadrilateral has all its sides equal, then it is a square.
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Solution :

(1) Ifx>0,then 2x > x.

(ii)) Ifx<0orx=>1,then x*>x.

(iii) Ifyoudivide a number except zero by itself, you will always get 1.

(iv) The angle subtended by a diameter of a circle at a point on the circle is 90°.

(v) Ifaquadrilateral has all its sides and interior angles equal, then it is a square.

EXERCISE Al1.1

1. State whether the following statements are always true, always false or ambiguous. Justify
your answers.
(1) There are 13 months in a year.
(11) Diwali falls on a Friday.
(iii) The temperature in Magadi is 26° C.
(iv) The earth has one moon.
(v) Dogs can fly.
(vi) February has only 28 days.
2. State whether the following statements are true or false. Give reasons for your answers.
(1) The sum of'the interior angles of a quadrilateral is 350°.
(i1) For any real number x, x> > 0.
(iii) A rhombus is a parallelogram.
(iv) The sum of two even numbers is even.
(v) The sum of two odd numbers is odd.
3. Restate the following statements with appropriate conditions, so that they become true
statements.
(i) All prime numbers are odd.
(i1) Two times areal number is always even.
(iii) For any x, 3x +1 > 4.
(iv) Forany x, x*>0.
(v) Inevery triangle, a median is also an angle bisector.

A1.3 Deductive Reasoning

The main logical tool used in establishing the truth of an unambiguous statement is deductive
reasoning. To understand what deductive reasoning is all about, let us begin with a puzzle for
you to solve.
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You are given four cards. Each card has a number printed on one side and a letter on the
other side.

A V 6 )

Suppose you are told that these cards follow the rule:
“If a card has an even number on one side, then it has a vowel on the other side.”
What is the smallest number of cards you need to turn over to check if the rule is true?

Of course, you have the option of turning over all the cards and checking. But can you
manage with turning over a fewer number of cards?

Notice that the statement mentions that a card with an even number on one side has a vowel
on the other. It does not state that a card with a vowel on one side must have an even number on
the other side. That may or may not be so. The rule also does not state that a card with an odd
number on one side must have a consonant on the other side. It may or may not.

So, do we need to turn over ‘A’? No! Whether there is an even number or an odd number on
the other side, the rule still holds.

What about ‘5°? Again we do not need to turn it over, because whether there is a vowel or a
consonant on the other side, the rule still holds.

But you do need to turn over V and 6. If V has an even number on the other side, then the rule
has been broken. Similarly, if 6 has a consonant on the other side, then the rule has been broken.

The kind of reasoning we have used to solve this puzzle is called deductive reasoning. It is
called ‘deductive’ because we arrive at (i.e., deduce or infer) a result or a statement from a
previously established statement using logic. For example, in the puzzle above, by a series of
logical arguments we deduced that we need to turn over only V and 6.

Deductive reasoning also helps us to conclude that a particular statement is true, because it
is a special case of a more general statement that is known to be true. For example, once we
prove that the product of two odd numbers is always odd, we can immediately conclude (without
computation) that 70001 x 134563 is odd simply because 70001 and 134563 are odd.
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Deductive reasoning has been a part of human thinking for centuries, and is used all the time
in our daily life. For example, suppose the statements “The flower Solaris blooms, only if the
maximum temperature is above 28° C on the previous day” and “Solaris bloomed in Imaginary
Valley on 15th September, 2005 are true. Then using deductive reasoning, we can conclude
that the maximum temperature in Imaginary Valley on 14th September, 2005 was more than 28°
C.

Unfortunately we do not always use correct reasoning in our daily life! We often come to
many conclusions based on faulty reasoning. For example, if your friend does not smile at you
one day, then you may conclude that she is angry with you. While it may be true that “if she is
angry with me, she will not smile at me”, it may also be true that “if she has a bad headache, she
will not smile at me”. Why don’t you examine some conclusions that you have arrived at in your
day-to-day existence, and see if they are based on valid or faulty reasoning?

EXERCISE Al.2

1. Use deductive reasoning to answer the following:

(1) Humans are mammals. All mammals are vertebrates. Based on these two statements,
what can you conclude about humans?

(11) Anthony is a barber. Dinesh had his hair cut. Can you conclude that Antony cut
Dinesh’s hair?

(111) Martians have red tongues. Gulag is a Martian. Based on these two statements, what
can you conclude about Gulag?

(iv) If it rains for more than four hours on a particular day, the gutters will have to be
cleaned the next day. It has rained for 6 hours today. What can we conclude about
the condition of the gutters tomorrow?

(v) Whatis the fallacy in the cow’s reasoning in the cartoon below?

All dogs have tails.
I have a tail.

Therefore I am a
dog.

'El'::@
[ g ===1
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2. Once again you are given four cards. Each card has a number printed on one side and a
letter on the other side. Which are the only two cards you need to turn over to check
whether the following rule holds?

“If a card has a consonant on one side, then it has an odd number on the other side.”

B 3 U 8

Al.4 Theorems, Conjectures and Axioms

So far we have discussed statements and how to check their validity. In this section, you will
study how to distinguish between the three different kinds of statements mathematics is built
up from, namely, a theorem, a conjecture and an axiom.

You have already come across many theorems before. So, what is a theorem? A mathematical
statement whose truth has been established (proved) is called a theorem. For example, the
following statements are theorems, as you will see in Section A1.5.

Theorem Al.1 : The sum of the interior angles of a triangle is 180°.
Theorem A1.2 : The product of two even natural numbers is even.

Theorem A1.3 : The product of any three consecutive even natural numbers is divisible by
16.

A conjecture is a statement which we believe is true, based on our mathematical understanding
and experience, that is, our mathematical intuition. The conjecture may turn out to be true or
false. If we can prove it, then it becomes a theorem. Mathematicians often come up with
conjectures by looking for patterns and making intelligent mathematical guesses. Let us look at
some patterns and see what kind of intelligent guesses we can make.

Example 4 : Take any three consecutive even numbers and add them, say,
2+44+6=12,4+6+8=18,6+8+10=24,8+10+ 12=30,20 + 22 + 24 = 66.
Is there any pattern you can guess in these sums? What can you conjecture about them?
Solution : One conjecture could be :

(1) the sum of three consecutive even numbers is even.

Another could be :

(i1) the sum of three consecutive even numbers is divisible by 6.



KBS0’ Ardeen 181

2. 58°%0 % Treord SPhen BXEran. (H8 SP5% a8 ZHS al Kogg B HEE DS &8
580 So@obald Gotnod. “ed @C%)éa a8 JDI Feey 1%26&@0333, A8 088 JHS 32 Qdogy
&0e008.” % AoHH0 D58 sor° ABETROTEE @ Both SR (BY) Sreed?

“SeBB a8 I rey BON 608 b Boks ) B Voggd BOA &otnod.

B 3 U 8

Al.4 2rpozres, $oSeSen 0k EEeen
[~

3050 BNBIBH (HXSBTen O & Fog), DE[ Dendod Jer Sgcoaoav@?og o 00D SeyoTeo.
&8 Dersost, a8 ?ocs;oéo, 2.8 BN HdaAn ?oséa@ea So0d (‘06&07:583&:6 fatacla) @@oe’j’s 07 DY)
BP0 (HIITee 2;63&5?3 B50d Qe ?ﬁgoa"éﬁ Faiet) 3633&)0@63.

S 508% SwotH 9IY Doz S, o, drrodo 08 dMWAB? JsrHes DoHHES 2.8
KBS (D550 _TPoBo Woerd. &Terdn, 8 (Bod [HISTre drrosee, D DB ES Al.S.
& DSdore SrFs.

?OCSC?QéO All: 28 (Sgbeso @) eodss Sere dvgo 180)°
?OCSC:QéO A1.2 : BoiH 58 SsFeesisogye @20 56 Sogy.
?ozrgoééo A1.3 : ST sdweisd 3800 DO fosFees Sogye o0 168° {Og}ﬁonﬂ arPA0S2C0D0B.

H08 KBS 0SPS S8 @850 egeBore, @os 5o KBS @oé@%}l SHEEorT, 00 a3l 2633&
2.8 (DHBID HOBD. HOB WO K50 Sur wdE0 7% Ko I ABEDe B, 0 &8 dgrodo
©HEOY. HBE T°Karen SBLMT SLrTrodD SEBLO TO° O BOJS KBS wodTren Bodheso oo
H0E)F0E" Lot S, Do a)d §Y Skraron HBDTo HoKD Do Jerod BOFI
HBB)S Badriowe e,

SRS 4 AFT° ety Hd HBKoggwd &8 B EoHod, tresrded,
2+4+6=12,4+6+8=18,6+8+10=24,8+10+12=30,20+22 + 24 =66.
& ozt D eelrodie SHrae BT sowe? B HO0D D D &88PoSHE)?

PES 1 a8 BB Ber GoKHND).

(1) Koeeso HBR HOKogge Iodo HOKogy WrHD.

T°EE v GolIWY:

(i) Soreer HE $BKomge Ido 6 & JFKRorr grRoS0tE0b.



182 Proofs in Mathematics

Example 5 : Consider the following pattern of numbers called the Pascal’s Triangle:

Line Sum of numbers

1 1 1
2 1 1 2
3 1 2 1 4
4 1 3 3 1 8
5 1 4 6 4 1 16
6 1 5 10 10 5 1 32
7

8

What can you conjecture about the sum of the numbers in Lines 7 and 8? What about the
sum of the numbers in Line 21? Do you see a pattern? Make a guess about a formula for the sum
of the numbers in line 7.

Solution : Sum of the numbers in Line 7 =2 x 32 =64 =2°¢
Sum of the numbers in Line 8 =2 x 64 =128 =27
Sum of the numbers in Line 21 =2%°

Sum of the numbers in Line n =2"""

Example 6 : Consider the so-called triangular numbers T :

°

°

o ©
o
o o e © o

® © e o o o066 o o o
-r1 T2 T3 T4

Fig. Al.1

The dots here are arranged in such a way that they form a triangle. Here T, = 1,
T,=3,T,=6,T,=10,and so on. Can you guess what T, is? What about T,? What about T ?
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Make a conjecture about T .

It might help if you redraw them in the following way.

[] |

T, T, T, T,
Fig. A1.2
Solution :T5= 1+2+3+4+5:15:¥
T = 1+2+3+4+5+6=21:_6>2<7
_ nX(m+1)
T = —

A favourite example of a conjecture that has been open (that is, it has not been proved to be
true or false) is the Goldbach conjecture named after the mathematician Christian Goldbach
(1690 — 1764). This conjecture states that “every even integer greater than 4 can be expressed
as the sum of two odd primes.” Perhaps you will prove that this result is either true or false,
and will become famous!

You might have wondered — do we need to prove everything we encounter in mathematics,
and if not, why not?

Why do I have to
prove everything I
say|
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The fact is that every area in mathematics is based on some statements which are assumed
to be true and are not proved. These are ‘self-evident truths’ which we take to be true without
proof. These statements are called axioms. In Chapter 5, you would have studied the axioms and
postulates of Euclid. (We do not distinguish between axioms and postulates these days.)

For example, the first postulate of Euclid states:

A straight line may be drawn from any point to any other point.
And the third postulate states:

A circle may be drawn with any centre and any radius.

These statements appear to be perfectly true and Euclid assumed them to be true. Why? This
is because we cannot prove everything and we need to start somewhere. We need some
statements which we accept as true and then we can build up our knowledge using the rules of
logic based on these axioms.

You might then wonder why we don’t just accept all statements to be true when they appear
self-evident. There are many reasons for this. Very often our intuition can be wrong, pictures or
patterns can deceive and the only way to be sure that something is true is to prove it. For
example, many of us believe that if a number is multiplied by another, the result will be larger
than both the numbers. But we know that this is not always true: for example, 5 x 0.2 =1, which
is less than 5.

Also, look at the Fig. A1.3. Which line segment is longer, AB or CD?

A& 5B
Line segment AB

C> , <D
Line segment CD
Fig.A1.3

It turns out that both are of exactly the same length, even though AB appears shorter!

You might wonder then, about the validity of axioms. Axioms have been chosen based on our
intuition and what appears to be self-evident. Therefore, we expect them to be true. However, it
is possible that later on we discover that a particular axiom is not true. What is a safeguard
against this possibility? We take the following steps:

(1) Keep the axioms to the bare minimum. For instance, based on only axioms and five
postulates of Euclid, we can derive hundreds of theorems.
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(11) Make sure the axioms are consistent.

We say a collection of axioms is inconsistent, if we can use one axiom to show that
another axiom is not true. For example, consider the following two statements. We
will show that they are inconsistent.

Statement1: No whole number is equal to its successor.
Statement 2: A whole number divided by zero is a whole number.

(Remember, division by zero is not defined. But just for the moment, we assume that
itis possible, and see what happens.)

From Statement 2, we get — =a, where a is some whole number. This implies that, 1
= 0. But this disproves Statement 1, which states that no whole number is equal to its
successor.

(111) A false axiom will, sooner or later, result in a contradiction. We say that there is a
contradiction, when we find a statement such that, both the statement and its
negation are true. For example, consider Statement 1 and Statement 2 above once
again.

From Statement 1, we can derive the result that 2 # 1.

Now look at x> — x2. We will factorise it in two different ways as follows:
(i) x*—x*=x(x—x)and

(i) x¥*-x*=(x+tx)(x—x)

So, x(x —x) = (x + x)(x — x).

From Statement 2, we can cancel (x —x) from both sides.

We get x = 2x, which in turn implies 2 = 1.

So we have both the statement 2 # 1 and its negation, 2 = 1, true. This is a contradiction. The
contradiction arose because of the false axiom, that a whole number divided by zero is a whole
number.

So, the statements we choose as axioms require a lot of thought and insight. We must make
sure they do not lead to inconsistencies or logical contradictions. Moreover, the choice of
axioms themselves, sometimes leads us to new discoveries. From Chapter 5, you are familiar
with Euclid’s fifth postulate and the discoveries of non-Euclidean geometries. You saw that
mathematicians believed that the fifth postulate need not be a postulate and is actually a theorem
that can be proved using just the first four postulates. Amazingly these attempts led to the
discovery of non-Euclidean geometries.

We end the section by recalling the differences between an axiom, a theorem and a
conjecture. An axiom is a mathematical statement which is assumed to be true
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without proof; a conjecture is a mathematical statement whose truth or falsity is yet to be
established; and a theorem is a mathematical statement whose truth has been logically
established.

S.

EXERCISEA1.3

Take any three consecutive even numbers and find their product; for example,
2x4x6=48,4x6x 8§=192, and so on. Make three conjectures about these products.

Go back to Pascal’s triangle.

Line1:1=11°

Line2: 1 1=11"

Line3:1 2 1=112

Make a conjecture about Line 4 and Line 5. Does your conjecture hold? Does your
conjecture hold for Line 6 too?

. Letuslook at the triangular numbers (see Fig.A1.2) again. Add two consecutive triangular

numbers. For example, T +T,=4,T,+T,=9, T +T, = 16.
What about T, + T, ? Make a conjecture about T +T .
Look at the following pattern:

12=1
112=121
1112= 12321

11112 = 1234321
111112 = 123454321
Make a conjecture about each of the following:
1111112 =
11111112 =
Check if your conjecture is true.

List five axioms (postulates) used in this book.

Al.5 What is a Mathematical Proof?

Let us now look at various aspects of proofs. We start with understanding the difference between
verification and proof. Before you studied proofs in mathematics, you were mainly asked to
verify statements.

For example, you might have been asked to verify with examples that “the product of
two even numbers is even”. So you might have picked up two random even numbers,
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say 24 and 2006, and checked that 24 x 2006 = 48144 is even. You might have done so for
many more examples.

Also, you might have been asked as an activity to draw several triangles in the class and
compute the sum of their interior angles. Apart from errors due to measurement, you would
have found that the interior angles of a triangle add up to 180°.

What is the flaw in this method? There are several problems with the process of verification.
While it may help you to make a statement you believe is true, you cannot be sure that it is true
in all cases. For example, the multiplication of several pairs of even numbers may lead us to
guess that the product of two even numbers is even. However, it does not ensure that the product
of all pairs of even numbers is even. You cannot physically check the products of all possible
pairs of even numbers. If you did, then like the girl in the cartoon, you will be calculating the
products of even numbers for the rest of your life. Similarly, there may be some triangles
which you have not yet drawn whose interior angles do not add up to 180°. We cannot measure
the interior angles of all possible triangles.

242 x 3002 =

3248 x 5468 =
726484, even

17760064, even

At age 8 % At age 16

43306884 x 45676
=1978085233584, even

At age 36 %\} At age 86

12466 x 3474 =

43306884, even
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Moreover, verification can often be misleading. For example, we might be tempted to
conclude from Pascal’s triangle (Q.2 of Exercise A1.3), based on earlier verifications, that 11°
=15101051. But in fact 11° =161051.

So, you need another approach that does not depend upon verification for some cases only.
There is another approach, namely ‘proving a statement’. A process which can establish the
truth of a mathematical statement based purely on logical arguments is called a mathematical
proof.

In Example 2 of Section A1.2, you saw that to establish that a mathematical statement is
false, it is enough to produce a single counter-example. So while it is not enough to establish
the validity of a mathematical statement by checking or verifying it for thousands of cases, it is
enough to produce one counter-example to disprove a statement (i.e., to show that something
is false). This point is worth emphasising.

Girls don’t
climb trees.

To show that a mathematical statement is false, it is enough to find a single counter-

example.

So, 7+ 5 =12 is a counter-example to the statement that the sum of two odd numbers is
odd.

Let us now look at the list of basic ingredients in a proof:
(1) To prove atheorem, we should have a rough idea as to how to proceed.

(i1) The information already given to us in a theorem (i.e., the hypothesis) has to be clearly
understood and used.
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For example, in Theorem A 1.2, which states that the product of two even numbers is
even, we are given two even natural numbers. So, we should use their properties. In the
Factor Theorem (in Chapter 2), you are given a polynomial p(x) and are told that p(a) = 0.
You have to use this to show that (x — a) is a factor of p(x). Similarly, for the converse
of'the Factor Theorem, you are given that (x — a) is a factor of p(x), and you have to use
this hypothesis to prove that p(a) =0.

You can also use constructions during the process of proving a theorem. For example,
to prove that the sum of the angles of a triangle is 180°, we draw a line parallel to one of
the sides through the vertex opposite to the side, and use properties of parallel lines.

(ii1) A proofis made up ofa successive sequence of mathematical statements. Each statement
in a proof is logically deduced from a previous statement in the proof, or from a theorem
proved earlier, or an axiom, or our hypothesis.

(iv) The conclusion of a sequence of mathematically true statements laid out in a logically
correct order should be what we wanted to prove, that is, what the theorem claims.

To understand these ingredients, we will analyse Theorem A 1.1 and its proof. You have already
studied this theorem in Chapter 6. But first, a few comments on proofs in geometry. We often
resort to diagrams to help us prove theorems, and this is very important. However, each statement
in the proofhas to be established using only logic. Very often, we hear students make statements
like “Those two angles are equal because in the drawing they look equal” or “that angle must be
90°, because the two lines look as if they are perpendicular to each other”. Beware of being
deceived by what you see (remember Fig A1.3)! .

So now let us go to Theorem A1.1.
Theorem Al.1 : The sum of the interior angles of a triangle is 180°.
Proof : Consider a triangle ABC (see Fig. A1.4).
We have to prove that ZABC+ £ BCA+ £ CAB=180° (1)
D A E

Py S
7

&
<

FigA 1.4
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Construct a line DE parallel to BC passing through A. (2)
DE is parallel to BC and AB is a transversal.
So, Z DAB and £ ABC are alternate angles. Therefore, by Theorem 6.2, Chapter 6, they are

equal,i.e. ZDAB=ZABC (3)
Similarly, Z/ CAE=Z ACB (4)
Therefore, Z ABC+ £ BAC+ £LACB=2ZDAB+£BAC+ £ZCAE (5)
But ZDAB+£BAC+ £ CAE = 180°, since they form a straight angle. (6)
Hence, ZABC+ ZBAC+ £ ACB=180°. (7)

Now, we comment on each step of the proof.
Step 1 : Our theorem is concerned with a property of triangles, so we begin with a triangle.

Step 2 : This is the key idea — the intuitive leap or understanding of how to proceed so as to be
able to prove the theorem. Very often geometric proofs require a construction.

Steps 3 and 4 : Here we conclude that £ DAE = Z ABC and £ CAE = Z ACB, by using the fact
that DE is parallel to BC (our construction), and the previously proved Theorem 6.2, which
states that if two parallel lines are intersected by a transversal, then the alternate angles are
equal.

Step 5 : Here we use Euclid’s axiom (see Chapter 5) which states that: “If equals are added to
equals, the wholes are equal” to deduce

ZABC+ZBAC+ ZACB=4ZDAB+£ZBAC+ ZCAE.

That is, the sum of the interior angles of the triangle are equal to the sum of the angles on a
straight line.

Step 6 : Here we use the Linear pair axiom of Chapter 6, which states that the angles on a
straight line add up to 180°, to show that £/ DAB +£Z BAC + £ CAE =180°.

Step 7 : We use Euclid’s axiom which states that “things which are equal to the same thing are
equal to each other” to conclude that ZABC+ L BAC+ ZLACB=4ZDAB+£BAC+ ZCAE
= 180°. Notice that Step 7 is the claim made in the theorem we set out to prove.

We now prove Theorems A1.2 and A 1.3 without analysing them.
Theorem A1.2 : The product of two even natural numbers is even.
Proof: Letxandy be any two even natural numbers.

We want to prove that xy is even.
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Since x and y are even, they are divisible by 2 and can be expressed in the form
x = 2m, for some natural number m and y = 2n, for some natural number 7.
Then xy =4 mn. Since 4 mn is divisible by 2, so is xy.

Therefore, xy is even.

Theorem A1.3 : The product of any three consecutive even natural numbers is divisible by

16.

Proof : Any three consecutive even numbers will be of the form 2#n, 2n + 2 and
2n + 4, for some natural number n. We need to prove that their product
2n(2n + 2)(2n + 4) is divisible by 16.

Now, 2n(2n+2)2n+4)=2nx2(n+1) x 2(n + 2)

=2x2x2n(n+1)n+2)=8n(n+ 1)n+?2).

Now we have two cases. Either n is even or odd. Let us examine each case.

Suppose 7 is even : Then we can write n = 2m, for some natural number m.

And, then 2n(2n +2)2n+4)=8n(n + 1)(n + 2) = 16mQ2m + 1)2m + 2).

Therefore, 2n(2n + 2)(2n + 4) is divisible by 16.

Next, suppose 7 is odd. Then z + 1 is even and we can write n + 1 = 2r, for some natural number
r.

We then have :2n(2n + 2)(2n + 4) =8n(n + 1)(n + 2)
=82r—1)x2rx2r+1)
=16r2r—1)2r+1)

Therefore, 2n(2n + 2)(2n + 4) is divisible by 16.

So, in both cases we have shown that the product of any three consecutive even numbers is
divisible by 16.

We conclude this chapter with a few remarks on the difference between how mathematicians
discover results and how formal rigorous proofs are written down. As mentioned above, each
proof has a key intuitive idea (sometimes more than one). Intuition is central to a mathematician’s
way of thinking and discovering results. Very often the proof of a theorem comes to a
mathematician all jumbled up. A mathematician will often experiment with several routes of
thought, and logic, and examples, before she/he can hit upon the correct solution or proof. It is
only after the creative phase subsides that all the arguments are gathered together to form a
proper proof.

It is worth mentioning here that the great Indian mathematician Srinivasa Ramanujan used
very high levels of intuition to arrive at many of his statements, which
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he claimed were true. Many of these have turned out be true
and are well known theorems. However, even to this day
mathematicians all over the world are struggling to prove
(or disprove) some of his claims (conjectures).

1.

SN nh W

Srinivasa Ramanujan

EXERCISE Al14 a 8§7—1 920)
Fig.A1.5

Find counter-examples to disprove the following statements:

(1) If the corresponding angles in two triangles are equal, then the triangles are
congruent.

(i1) A quadrilateral with all sides equal is a square.

(iii) A quadrilateral with all angles equal is a square.

(iv) For integers a and b, \Jo* + > =a+b

(v) 2m*+ 11 is a prime for all whole numbers 7.

(vi) n*—n+41 is aprime for all positive integers 7.

Take your favourite proof and analyse it step-by-step along the lines discussed in Section

A1.5 (what s given, what has been proved, what theorems and axioms have been used,
and so on).

Prove that the sum of two odd numbers is even.

Prove that the product of two odd numbers is odd.

Prove that the sum of three consecutive even numbers is divisible by 6.

Prove that infinitely many points lie on the line whose equation is y = 2x.

(Hint : Consider the point (n, 2n) for any integer 7.)

You must have had a friend who must have told you to think of a number and do various

things to it, and then without knowing your original number, telling you what number you

ended up with. Here are two examples. Examine why they work.

(1) Choose anumber. Double it. Add nine. Add your original number. Divide by three.
Add four. Subtract your original number. Your result is seven.

(i1) Write down any three-digit number (for example, 425). Make a six-digit number by

repeating these digits in the same order (425425). Your new number is divisible by
7,11 and 13.
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A1.6 Summary

In this Appendix, you have studied the following points:

1.

9]

In mathematics, a statement is only acceptable if it is either always true or always false.

. To show that a mathematical statement is false, it is enough to find a single counter-example.

2
3.
4

Axioms are statements which are assumed to be true without proof.

. A conjecture is a statement we believe is true based on our mathematical intuition, but which

we are yet to prove.

. A mathematical statement whose truth has been established (or proved) is called a theorem.
. The main logical tool in proving mathematical statements is deductive reasoning.

. A proofis made up of a successive sequence of mathematical statements. Each statement in

a proof'is logically deduced from a previouly known statement, or from a theorem proved
earlier, or an axiom, or the hypothesis.
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. .8 HoBS ORI BT AEPHO[ED S0 Kb ©OBERH WHREOMT HEGO @ 263)& ($983850.
. QbeHes BOHDES 2.8 Keds (DSBS a8 ?omcgoéo 0L,

. KBS (OISt JrHes BohEos® [Heed @88 Fedo NS e D88,

N SN O AW

. 2.8 JBrDes HedS (D3TTPe Bo) HToD (B008&® Ererofosendod. EPHRS (¥ ([HSSSo Z*g)sore
Swo&ore BODS (HHSK0 508 Sor B0BL S00H Brersd) BoHES 2.8 dTEoso 08 S a8 %?’oogée)e‘éo
S HOBeNS od ([18rotatHEob.
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ANSWERS/HINTS
I _—

EXERCISE 1.1

1. Yes. 0=

0 . .
n etc., denominator g can also be taken as negative integer.

2. There can be infinitely many rationals betwen numbers 3 and 4, one way is to take them

3=_21 ,_ 2% . Then the six numbers are 22,23 24 25 26 27
6+1 6+1 77777717777
3 30 4 40 . 31 32 33 34 35
3. <505 350" Therefore, five rationals are : 0" 50" 50" 50" 50

4. (i) True, since the collection of whole numbers contains all the natural numbers.
(i1) False, for example —2 is not a whole number.
(iii) False, for example % is arational number but not a whole number.
EXERCISE 1.2
1. (1) True, since collection of real numbers is made up of rational and irrational numbers.
(11) False, no negative number can be the square root of any natural number.
(111) False, for example 2 is real but not irrational.
2. No. For example, V4 =2 is arational number.

3. Repeat the procedure as in Fig. 1.8 several times. First obtain V4 and then 5 .
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e2aened [ Beddden
I |

@2}5}60 1.1

1. e, o=%

=g=g Foll, 5550 g % wwery oy Sre BroESS)

2. 3585 4 @9o8e ¢35 BB 88B%H Doggen o). O EHFD 2.8 erdo

3=_2t ,_28 - P 6 Soggen 22 23 24 25 26 27
6+1 6+1 7 7 7 7 7 7
3 30 4 40 ” 31 32 33 34 35
3. s~ 303 30 . 5085 e98BHAD 08D 1 0 500 507 50 30

4. (1) D850 (DohSeRSrr) SFeTRoseen &95& D5ees Hoggo EOA ok,
(i) o3850, emrrdnd — 2 grgpoto s,
(1i1) &850, GueEEedd % ©BBHD Hogy =0 repodo s,
ogrgdo 1.2
1. (i) 0850, RN Boggen 03D EEBDH $0%n BEBHH Dogge 633&%‘260.
(1) &0, o Dsrasdoggd aweadoss S0 SRS
(iii) 880 amirtn 2 a8 Koy S ESHAD Soay 5.
2. =%, SESH% V4 =2 a8 o88H0%H Dogy,

3. $Heo 1.88° AeTeY) OIEPE dJTeBo BOSTO. ey V4 BBoard 5 SPotHEedd.
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EXERCISE 1.3

1. (1) 0.36, terminating. (i1) 0.09, non-terminating repeating.
(iii)  4.125, terminating. (iv) 0230769 , non-terminating repeating.
(V) 0.18 non-terminating repeating.(vi) 0.8225 terminating.

2 1 — 3 1 — —_— Yy
2. Z=2x-=0285714, = =3x—=0428571, i=4><l=0.571428, §=5X1=0.714285,
7 7 7 7 7 7 7 7

6 =6X 1 =0.857142
7 7

3. (i) %[Letx=0.666...So10x=6.666...or,10x=6+x or, x=-==]

.. 43 |
(11)% (1i1) 599

I [Letx=0.9999...S010x=9.999... or, 10x =9+x or, x =1]

0.0588235294117647

The prime factorisation of ¢ has only powers of 2 or powers of 5 or both.
0.01001000100001. . ., 0.202002000200002. . ., 0.003000300003. . .
0.75075007500075000075. . ., 0.767076700767000767. . ., 0.808008000800008. . .

S A

(1) and (v) irrational; (i1), (ii1) and (iv) rational.
EXERCISE 14
1. (1) Irrational  (i1) Rational  (ii1) Rational  (iv) Irrational
(v) Irrational
2. () 6+3/2+23++6 (1) 6 (iii) 7+ 2410 (iv) 3

3. There is no contradiction. Remember that when you measure a length with a scale or any
other device, you only get an approximate rational value. So, you may not realise that either
c or d is irrational.

4. Refer Fig. 1.17.

5. (1) g (i1) 7 ++6  (iii) \/3;\/5 (iv) \/73+2
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wgrgdo 1.3
1. (i) 0.36 wo8sdhy szrodo (i) 0.09, @oB0sed e Baeodo (eXBo)
(iii) 4.125, @o85dhy $aeodo (iv) 0230769 , @080 S - e Szrodo

(V) 018 wodo 529 edFo b dzeodo (Vi) 0.8225 woshdly $arodo

2. 2oL o3ss7ia, 2o3xto0assTn, 2o axl 0571408, 2= 5% L = 0714285,
7 7 7 7 7 7 7 7

6 =6X 1 = 0857142
7 7

3. (i) 2 [x=0.666. . . s ot 10x=6.666. .. 8w, 10x=6+x So=, x=o=>]

.., 43 1
(11) % (111) @

4. 1[Letx=0.9999. . .oosim oHnwm 10x=9.999... &, 10x =9+x Sz, x =
1]

5. 0.0588235294117647

6. g ¥ 5°Beo8 Defesd BHwo 2 TE) HrEroBore e Swe 5 Gnd) Hrarosore el Bw° Bo&od
BOA 60K,

7. 0.01001000100001. . ., 0.202002000200002. . ., 0.003000300003. . .
8. 0.75075007500075000075. . ., 0.767076700767000767. . ., 0.808008000800008. . .
9. (i) 08cio (V) 88Ba% Somgen; (i), (iil) S8 (IV) en ©58BD HSoggen
ogrsdo 1.4
1. (i) s6ch Sogy (i) ©88BD Sogy  (iii) esdash Koy
(iv) 86dch Somg (V) E8BH Soag
2. (1) 6+3v2+23++6 (i1) 6 (iii) 7 + 2410 (iv) 3

3. @t 2enSod DHGE Bk, IHZT Y .8 Eroed eos® D Toe 588 $EL0E® TR EOAIH
5% Do SPEH PosKeB HEoWHE:. B ¢ Tur d md E8BaD Vo FrROTHE.

4. %60 1.17 50 $8890504.

5. (1) g (ii) V7 + 6 (iii) \/E;x/a (iv) \/73+2
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. () 8 (i) 2 (i) 52.() 27 (i) 4 (i) 8 (iv) %{GZSY; =(5")

EXERCISE 1.5

W=

= 571

(i) 2 (ii) 3 (iif) 11 (iv) s6
EXERCISE 2.1
(1) and (i1) are polynomials in one variable, (v) is a polynomial in three variables,

(ii1), (iv) are not polynomials, because in each of these exponent of the variable is not a
whole number.

2. (i) 1 (i1) —1 (iii) % (iv) 0
3. 3x*¥ —4; J2y'"(You can write some more polynomials with different coefficients.)
4. (i) 3 (i) 2 (iii) 1 (iv) 0
5. (1) quadratic (i1) cubic (111) quadratic  (iv) linear

(v) linear (vi) quadratic (vii) cubic

EXERCISE 2.2

1. (i) 3 (ii) —6 (iii) -3
2. (i) 1,1,3 (i) 2,4, 4 (i1i) 0,1, 8 (iv)-1,0,3
3. (i) Yes (i1) No (ii1) Yes (iv) Yes

(v) Yes (vi) Yes

(vii) —% is a zero, but % is not a zero of the polynomial (viii) No
4. (i) -5 (i) 5 (iii) _75 (iv) %

v) 0 (vi) 0 (vii) -2

EXERCISE 2.3
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wgrgdo 1.5
1. () 8 (ii) 2 (i) 52.() 27 (i) 4 (ii)) 8 (iv) %{(lzsi; =(53)'~% =51}

3. (i) 2 (if) 32 (iif) 11 (iv) s6°
ogrs0 2.1

1. (i) %60 (i) @559 DESETBE wirdthen (V) 0 3 SEoedhes® oiroDs.

(iii), (1v) &3 ad0Hten 525, JoHE0E & aFTVHHSE® (HS SBT3 EwE) HrEeoso Fgroso
soe.

2. () 1 (ii) —1 (iii) % (iv) 0

3. 3% —4; 2" (D) S8 Heesees® HOER) 0:505EHe TPeHi)

4. (i) 3 (ii) 2 (iii) 1 (iv) 0
5. (i) &% (i) 50 (iii) %% (iv) Bdod
(v) Scd (vi) 8 (vii) 50
e—9ap°§260 2.2
1. (i) 3 (i) —6 (iii) -3
2. () 1,1,3 (i) 2, 4, 4 (iii) 0, 1, 8 (iv)-1,0,3
3. (i) o5 (i) so (iii) o9 (iv) @5
(V) 05 (V1) 05
o 2 v
(vii) "5 058 Lrly Densd =0 A B0 TNEE Ly Dend S°ED.
(viii) st
4. (i) -5 (i) 5 (iii) ‘75 (iv) %
v) 0 (vi) 0 (vii) <

wgrgdo 2.3



212 Answers

1. (x + 1) is a factor of (i), but not the factor of (i1), (iii) and (iv).

2. (1) Yes (i1) No (111) Yes

3. (i) -2 (i) -(2++2) (i) V2 -1 (iv) %

4. (i) Gx—=1)(@x—-D(AiD)x+3)(2x+ 1) (iii) 2x +3) B3x—2) (iv)
x+1)(Bx—-4)

5.0 x=-2)(x—1)(x+1) (M E+Hx+1)E-25)
(i) (x+1D)@Ex+2)(x+10) VY- +1)Q2y+1)

EXERCISE 24

1. (i) x>+ 14x +40(ii) x> — 2x — 80 (iii) 9x* — 3x — 20
(V) — 2 (V) 9 — 4x?

2. (1) 11021 (i) 9120 (iii) 9984

(i) (Bx+) Gx+ )iy~ 1) 2y - 1)(111)(x + %) ( _ %)

(1) x> +4y? +162° + 4xy + 16yz + 8xz

(1) 4x* +y* + 22 —4xy — 2yz + 4xz

(i)  4x*+ 97 +4z° — 12xy + 12yz — 8xz
(iv)9a® + 49b* + ¢* — 42ab + 14bc — 6ac
(V) 4x? + 25)* + 9z — 20xy — 30yz + 12xz

~a b ab a
—+—+1-—=-b+—
(V1)16 4 4 2

(i) 2x+3y—4z) 2x+3y—4z) (i) (V2x+y+2422)(2x+y+2v22)

(1) 8+ 12x* +6x + 1 (i) 8d® —27b* —364’b + 54ab’
027 5 21,9 a8 s a4
(111) 8x+4x +2x+1 (iv) x 777 Xy + 3
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1. (x + 1) @086 (1) & se8esrodo, 50 (1), (111) L8k (1V) 0 se8eroso S0,

2. (i) o5 (ii) s (iii) w5
3. (i) -2 (i) -(2++2) (i) v2-1 (iv) 5
4. (i) Gx—1) @x—1) (i) x+3)Q2x+1) (iii) (2x +3) B3x - 2) (iv)
(x+1) Gx—4)
5.(0) G-2)(x—1) (x+1) (i) e+ 1) (x + 1) (x = 5)
(i)  (c+1)(x+2) (x+10) V) =) @+ 1)Q2y+1)
grsdo 2.4

1. (i) x¥* + 14x +40 (ii) x> — 2x — 80 (iii) 9x* — 3x — 20
(iv)y* — 2 (V) 9 — 4x?

2. (i) 11021 (ii) 9120 (iii) 9984

3. (i) Bx+y)Bx+y) (HQRv-1)Q2y-1) (iii) (X+%)(x—%)

4. (1) x>+ 42+ 162+ 4xy + 16yz + 8xz
(1) 4x? +)? + 22 —4xy — 2yz + 4xz
(iii) 4x? + 9y? + 422 — 12xy + 12yz — 8xz
(iv)9a® + 49b* + ¢* — 42ab + 14bc — 6ac
(V) 4x* + 25)* + 922 — 20xy — 30yz + 12xz

a b ab a
—+—+1-—-b+—=
(V1)16 4 4 2

5. (1) Qx+3y—4z) 2x+3y—4z) (i) (V2x+y+2V22)(-2x +y + 2422)

6. (i) 8x*+ 12x* + 6x + 1 (i) 8d® —27b% —364’h + 54ab’
L0275 27, 9 PO S
(i11) 8x+4x +2x+1 (iv) x 777 x)’+—3



214 Answers

7. (1) 970299 (i1) 1061208 (iii) 994011992
8. () 2a+ b)2a+ b)(2a + b) (i) 2a — b)(2a — b)(2a — b)
(i) (3 -5a)@3 —5a)33 - 5a) (iv)(4a — 3b)(4a — 3b)(4a — 3b)
o =234
10. (i) By + 5z) (9% + 2522 — 15yz)  (ii) (4m — Tn) (16m* + 49> + 28mn)
11. Bx+y+z)(9x*+y*+22—3xy —yz—3x2)
12. Simiplify RHS.
13. Putx+y+z=0in Identity VIII.
14. (i) —1260. Leta=-12,b="7,c=5.Here a+ b + ¢ =0. Use the result given in Q13.
(i1) 16380
15. (i) One possible answer is : Length = 5a — 3, Breadth = 5a -4
(i1) One possible answer is : Length = 7y — 3, Breadth = 5y + 4
16. (i) One possible answer is : 3, x and x — 4.
(i1) One possible answer is : 4k, 3y + 5 and y — 1.

EXERCISE 3.1

1. Consider the lamp as a point and table as a plane.
Choose any two perpendicular edges of the table. S Lamp
Measure the distance of the lamp from the longer oo
edge, suppose it is 25 cm. Again, measure the distance
of the lamp from the shorter edge, and suppose it is
30 cm. You can write the position of the lamp as (30, \_U

25) or (25, 30), depending on the order you fix.
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7. (i) 970299 (ii) 1061208  (iii) 994011992
8. (i) (2a + b)(2a + b)(2a + b) (i1) 2a — b)(2a — b)(2a — b)
(iii) (3 — 5a)(3 — 5a)(3 — 5a) (iv)(4a — 3b)(4a — 3b)(4a — 3b)
o 3o
10. (i) 3y + 52) (92 + 2522 — 15yz2) (i) (4m — Tn) (16m* + 4912 + 28mn)
11. Bx+y+2z) (9x*+)? + 22— 3xy — yz — 3x2)
12. RHS % J§o0S0&.
13. VI 8808t x +y+2=0 e &858,

14. (i) 1260 ,a=-12,b=7,c =5 o58%&. a3 a+ b+ c=0. Q13 & ad 50z
=rsloviilatetnlolal

(ii) 16380
15. (i) ggHa Srgeso, PEH = Sa — 3, ey = Sa—4
(if) 558 wsimgmiso P = Ty — 3, 3oy = Sy + 4
16. (i) rggsodhy Siegrso 3, x Sodasw x — 4.

(if) Jegggodly dSrerso 4k, 3y + 5 Kbasw y — 1.

ogrgdo 3.1

25 cm
1. 29 &8 Shdeorr $oasw Hard) &8 Hotdre wisod. Lawy
DY T BT BoKH ©OPOTT &) WoHeH SwEod.
L) @0 Fod BFIS Ko Broed) FoBod. ©b a8 25
200.8. @808, e O @0 Hod HPIB Ko KrPTeR)

Fokol. o6 3020.8. ebsol. s Sbo Ty (30,25) \_U

30 cm

S (25,30) TPODHE). b FiYen é@é)?é& S0P eBHE
&0,
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2. The Street plan is shown in figure given below.

—_— N N <t
N's553383
2 2 EEE
N n AN n RN
ANANANANNAN
< (2.5) > Street 5
3,4
< (3.4 > Street 4
4.3
< [ > Street 3
< > Street 2
< > Street 1
\\Y% C E
Vv VvV VvV VvV
N
S

Both the cross-streets are marked in the figure above. They are uniguely found because of
the two reference lines we have used for locating them.

EXERCISE 3.2
1. (1)Thex-axisandthey-axis (i) Quadrants (iii) The origin
2. (1)(=5,2) (()(5,-5 (@Gi)E (@GAv)G (v)6 (vi)—3 (vii)(0,5) (viii) (-3, 0)

EXERCISE 4.1
1. x-2y=0
2. (1) 2x+3y—935=0;a=2,b=3,c=-935
(i)x—2-10=0;a=1,b= 2 c=-10
(iii) 2x+3y—-6=0,a=-2,b=3,c=-6
(iv)1x=3y+0=0;a=1,b=-3,c=0
v) 2x+5y+0=0;a=2,b=5,c=0
(v)3x+0y+2=0;a=3,b=0,c=2
(vii) 0x+1y-2=0;a=0,b=1,c=-2
(viii) 2x+0.y+5=0;a=-2,b=0,c=5
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2. (808 adwdd H808° I (HerdE Srbadis.

— NN <t n

N Q & G G G

%3 %3 43 %3 63

AN N N AN A
< 2 > 5% 5
< (3.4 > 564
< ) IO P!
< > e 2
< > 5 ]
W E

C vV V V VvV V

S

3 H00° (596 i@és (cross-streets) Deoen Botke HoHaTEOD. @ (HEgEOMT EIDIEOD. DOLHEE
A KeD0HEE BoH 3'33563 J38EBpOD SHRrA0TED.

ogrsdo 3.2
1. (1)x - ®F0 Bk ¥ -wgo (i1) F&Swen  (111) e Dot
2. ()(=5,2) ((1)(5,-5) (@)E @Gv)G (v)6 (vi)—3 (vii)(0,5) (viii)(-3,0)

ogrgdo 4.1
1. x-2y=0
2. (i) 2x+3y—935=0;a=2,b=3,c=—-1935
(i)x—2-10=0;a=1,b= 7+ c=-10
(ii1) 2x+3y-6=0;a=-2,b=3,c=-6
(V) 1x—-3y+0=0;a=1,b=-3,c=0
(V) 2x+5y+0=0,a=2,b=5,c=0
(vi)3x+0y+2=0;a=3,b=0,c=2
(vii) 0x+1.y-2=0;a=0,b=1,c=-2
(viii)  2x+0.y+5=0;a=-2,b=0,c=5
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N =

EXERCISE 4.2

. (1i1), because for every value of x, there is a corresponding value of y and vice-versa.
. (1) (0,7),(1,5),(2,3),(4,-1)

(i) (1,9=m), (0,9), (-1, 9 + ), (% oj

(ii1) (0, 0), (4, 1), (=4, 1), (2’ %)

3. (i) No (i1) No (111) Yes (iv) No (v) No
4. 7
EXERCISE 5.1

1. (1) False. This can be seen visually by the student.

(11) False. This contradicts Axiom 5.1.

(ii1) True. (Postulate 2)

(iv) True. If you superimpose the region bounded by one circle on the other, then they
coincide. So, their centres and boundaries coincide. Therefore, their radii will
coincide.

(v) True. The first axiom of Euclid.

3. There are several undefined terms which the student should list. They are consistent,
because they deal with two different situations - (1) says that given two points A and B,
there is a point C lying on the line in between them,; (i1) says that given A and B, you can
take C not lying on the line through A and B.

These ‘postulates’ do not follow from Euclid’s postulates. However, they follow from

Axiom5.1.

4. AC=BC
So, AC+AC= BC+AC(Equals are added to equals)
1e., 2AC=AB (BC+AC coincides with AB)

Therefore, AC= % AB

5. Make a temporary assumption that different points C and D are two mid-points of AB.
Now, you show that points C and D are not two different points.

6. AC=BD (Given) (1)

AC= AB+BC(Point B lies between A and C) (2)

BD = BC + CD(Point C lies between B and D) 3)
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@e;vgéo 4.2

1. (iii) 200508 B8 x JenSDH I8 @HES P Yensd &0ty KB (B ¥ DenddH el
30rHEIND X Dendd Gotnod.

2. () (0,7),(1,5),(23), (4 1)
(i) (1,9 —-m), (0,9), (-1, 9 +m), (% oj

(iii) (0, 0, (4, 1), (—4, 1), (2, %)
3. (1) o (11) =% (111) o5 (iv) so% (V) o0
4. 7
e—9a;°§:60 5.1
L (1) oS80 ab dugds )dddorr ekgbo ©H&od.
(i) o850 @b 5.1 ey P ddgo.
(111) D&go0. (2 é(o‘sée)e‘éo)
(iv) B50. Both BE™S HTees aEmrdP HEES SoDIHD ©d H8FIFow. 579 & Sopren
8050 HF Hothes Ere DEFDoWH. worHBeD T HF THFTes Eroe DEFDIow.
(V) &850, 0088 Swesd Jesoed g

3. as 938 9SS Herodd g0 edee ErH08° SrEHE). @ HoIEHIB. JotHB0E Botk
30 DotTRe HbDoSm (1) Hod akpas A ocn B dobde om & Tep
A, B o 555 C o Hoths) Soth o Beoyod. (i1) oo& A b B rhose 53 T SHowe
C 3 Dot & é‘@?:ézéz‘ﬁ% @ BOAXN.

& dEren ArlE FToH 080D TN wowd © FEEKy SS 5. 1% @080

GI)OW.

4. AC=BC
SRV AC+AC=BC+AC (3575 orHon ddrdorHed Erime)
Sials 2AC= AB (BC+AC = AB 09 585208 )
Therefore, AC= 1 AB

2
5. C%0805m D o089 AB % 3otk 33563 Koess DothHen 2:508%08. 19% C 5805w D 939 3otk

36(363 DotHDen 505 @ Seard.
6. AC=BD (2552800) (1)
AC= AB+BC (B o) Adcin Co i 8ot ) (2)
BD=BC+CD ( C dot B $6a D o s St ) (3)
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Substituting (2) and (3) in (1), you get
AB+BC=BC+CD

So, AB = CD (Subtracting equals from equals)

. Since this is true for any thing in any part of the world, this is a universal truth.

EXERCISE 6.1

. 30°,250° 2.126° 4. Sum of all the angles at a point = 360°

. £QO0S=ZSOR+ZROQand ZPOS=ZPOR—-ZSOR. 6. 122° 302°

EXERCISE 6.2
. 126° 2. 126°, 36°, 54° 3. 60° 4. 50°, 77°
. Angle of incidence = Angle of reflection. At point B, draw BE L PQ and at point C, draw
CF LRS.
EXERCISE 7.1
. They are equal. 6. L BAC=ZDAE
EXERCISE 7.2
. ZBCD=£4BCA+Z4DCA=4B+ 4D 7. each is of 45°
EXERCISE 7.3

. (ii) From (i), Z ABM = / PQN

EXERCISE 8.1

. (1) From ADAC and A BCA, show Z DAC=ZBCAand ZACD=ZCAB, etc.

(1) Show £ BAC = £ BCA, using Theorem 8.4.
EXERCISE 8.2

. Show PQRS is a parallelogram. Also show PQ || AC and PS || BD. So, £ P=90°.
. AECF is aparallelogram. So, AF || CE, etc.
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(2) 58c (3) o (1) 6° (B80T
AB +BC=BC+CD

DS, AB = CD (358 oo $08 3878 oedHed S2Fchmr)

o808 (HH050S” (HS RTS8 Bh V0. 2O FBYE JEso.
©gT5d0 6.1

30°,250° 2. 126° 4. &8 Dot I o e Indo = 360°

ZQOS =~ZS0OR + ZROQ &&cs» ZPOS=ZPOR - ZSOR. 6. 122°, 302°
©gT50 6.2

126° 2. 126°, 36°, 54° 3. 60° 4. 50°,77°

H83 S0 Yend = HorS8E Sero Dend. B Dot ¢ BE L PQ erdey BES Hdasm C
CFL RS eren CF & Achod.

ogrgo 7.1
8 dleared 6. Z/BAC=ZDAE
@a;'géo 7.2
/ZBCD=/BCA+/ZDCA=/ZB+/2D 7. $588%00 Denss 45°
ogrsdo 7.3
(ii) o0& (1), L ABM = Z PQN
ogrsdo 8.1

(1) A DAC %8050 A BCA © o0& £ DAC = £ BCA $8c5w £ ACD = £ CAB 3w @
Sosrd.

(ii)Rmpodo 8.4 & e3&rhod L BAC=ZBCA od Srod.

@a;'géo 8.2

PQRS 2.8 $5r088 $88p20 o &rard. wodsdome PQ || AC &oai» PS || BD & &rard.
593, L P =90°.

AECF o036 &8 $5r088 $&dy0. 5%93, AF || CE S
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EXERCISE 9.1

. Prove exactly as Theorem 9.1 by considering chords of congruent circles.

. Use SAS axiom of congruence to show the congruence of the two triangles.

EXERCISE 9.2

. 6 cm. First show that the line joining centres is perpendicular to the radius of the smaller

circle and then that common chord is the diameter of the smaller circle.

. IfAB, CD are equal chords of a circle with centre O intersecting at E, draw perpendiculars

OM on AB and ON on CD and join OE. Show that right triangles OME and ONE are
congruent.

. Proceed as in Example 2. 4. Draw perpendicular OM on AD.
. Represent Reshma, Salma and Mandip by R, S

and M respectively. Let KR = x m (see figure).

0
Area of AORS =2 x x 5. Also, area of A ORS = S
2 RE—1¢ M
LTrsxoL="1Lx6x4 k/
2 2 ' S
Find x and hence RM.

. Use the properties of an equilateral triangle and also Pythagoras Theorem.

EXERCISE 9.3
. 45° 2. 150°, 30° 3. 10°
. 80° S. 110° 6. ZBCD=80°and ZECD=50°

. Draw perpendiculars AM and BN on CD (AB || CD and AB < CD). Show

A AMD = A BNC. This gives £ C = £ D and, therefore, ZA+ £ C=180°.
EXERCISE 10.1

V3

R , 900,3cm” 2. T 1650000 3. 20/2m?

. 21x/ﬁcm2 5. 9000 cm? 6. 9\/6 cm?
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ogrsdo 9.1
1. dpodo 9.1 (Hseo HB0ErS Hmee wges HOKpd®S SHHR rHes VD,
2. Boh (BghHeen SBHETH0 @ S 85.8°%. 5. DER&PSEY DOHKPR) SBBAOT#D.

g0 9.2

1. 620.2. Jwdere 5 Somrotn w0 T VS TGI8 ©0@0rT G0N0 Srard
$oBAsm GG ey DY) HE 7500 © Tweard.

2. OBoEorr Ko HFo g Botk Hes e o E 58 90808588 AB % eowo OM dain
CD % o020 ON & Acsrd 805w OELD Sokos. oo (@gherer OME 8050 ONEeo
DBRILPEE0D S°ard.

3. &SR8 25 ©90080508. 4. AD S5 OM ©02Pd) AcDo&.

5. 3?{%&, ey SBA Ho36%0H R, S Hociw M o8t
SreDoBod. KR =xm ehsbold. (Herd) $riod). A

ORS B=rego Z%x x 5. %0800 A ORS Bzrexo =

R ,"K M
RS xOL =1 x6x4. %&/

X 58350 RM Qendeods Eof°H08.

N | =

6. Soerso (BghHe: Goen B85 FRlaulatety ?’ocs(;o@&)& &EHBrA0S0E.

g0 9.3
1. 45° 2. 150°, 30° 3.10°
4. 80° 5. 110° 6. ZBCD=80°%8c» L ECD=50°

7. CD&s AM 50805» BN eoeres Ackod. (AB || CD %8050 AB <CD).
A AMD = A BNC @9 $rar9. H808 L C=ZLDHoss» LA+ £ C=180°.

ogrgdo 10.1

1. ?a2,900,3cm2 2. T 1650000 3. 20/2m?

4. 21/11em? 5. 9000 cm? 6. 915 cm’
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EXERCISE 11.1

1. 165 cm? 2. 1244.57 m? 3. () 7 cm (ii) 462 cm?
4. (i) 26 m (i) ¥ 137280 5. 63 m 6.3 1155
7. 5500 cm? 8. ¥ 384.34 (approx.)
EXERCISE 11.2
1. (i) 1386 cm? (i1) 394.24 cm? (iii) 2464 cm?
2. (i) 616 cm? (i1) 1386 cm? (iii) 38.5m?
3. 942 cm? 4.1:4 5.3 27.72
6. 3.5cm 7.1:16 8. 173.25 cm?
9. (i) 4mr (i1) 4mr? (i) 1:1
EXERCISE 11.3
1. (i) 264 cm’(ii) 154 cm? 2. (1) 1.232 1 (i1) %l
3. 10cm 4.8 cm 5.38.5 Kkl
6. (i) 48 cm (ii) 50 cm (iii) 2200 cm? 7. 100 cm® 8. 240m cm®; 5
12
9. 86.625x m?, 99.825 m?
EXERCISE 114
1 (i) 1437 5 em’ (ii) 1.05 m’ (approx.)
2. (i) 11498 % cm’ (i1) 0.004851 m’ 3. 345.39 g (approx.)
4. L 5. 0.303/ (approx.) 6. 0.06348 m’ (approx.)

64
7. 179§cm3 8. (1)249.48 m> (ii) 523.9 m’ (approx.) 9. (i) 3r (i) 1:9

10.22.46 mm® (approx.)
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1. 165 cm? 2. 124457 m2 3. (i) 7 em (ii) 462 cm?
4. (i) 26 m (i) T 137280 5.63m 6.3 1155
7. 5500 cm? 8. T 384.34 (Sosimdorr)
ogrgdo 11.2
1. (i) 1386 cm? (ii) 394.24 cm? (iii) 2464 cm?
2. (i) 616 cm? (i) 1386 cm? (iii) 38.5m?
3. 942 cm? 4.1:4 5.327.72
6. 3.5cm 7.1:16 8. 173.25 cm’
9. (i) dm? (i) 4m (iii) 1: 1
ogrgdo 11.3
1. (i) 264 cmi(ii) ISdem’ 2. (i) 12321 (i) 51/
3. 10cm 4. 8 cm 5.38.5kl
6. (i) 48 cm (ii) 50 cm (iii) 2200 cm? 7. 100w cm® 8. 2407 cm’; 5 : 12
9. 86.625x m’, 99.825 m?
@e;fgzéo 11.4
1 (i) 1437 5 em’ (if) 1.05 m’ (somtore)
2. (i) 11498 % cm’ (ii) 0.004851 m’ 3.345.39 g (Rosootor)
4. 6—14 5. 0.303/ (o5m5orm) 6. 0.06348 m® (Roseorr)
7. 179§cm3 8. (i) 249.48 m?  (ii) 523.9 m’® (osetore) 9. (i) 3r (i) 1:9

10.22.46 mm® (Rod=dorr)
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EXERCISE 12.1

1. (ii)Reproductive health conditions.

3. (i)Party A 4. (ii) Frequency polygon (iii) No 5. (i) 184
8.

Now, you can draw the histogram, using these lengths.

9. (i)

Now, draw the histogram.
(i) 6-8
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@e;‘gg‘éo 12.1

1. (ii) 535588 Som0soDS 6Ky Hintige.
3. (i) g A 4. (i1) DG wssogde  (111) 52 5. (i) 184

8.

D G PLHOHBEFAOY o PFSTee Ao PP AcHIS.

9. (i)

2 SRPTS AESTer DFo Ackrd.
(i) 6 -8
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EXERCISEAL1.1

. (1) False. There are 12 months in a year.

(11) Ambiguous. In a given year, Diwali may or may not fall on a Friday.

(ii1) Ambiguous. At some time in the year, the temperature in Magadi, may be 26° C.
(iv) Always true.

(v) False. Dogs cannot fly.

(vi) Ambiguous. In aleap year, February has 29 days.

. (1) False. The sum of the interior angles of a quadrilateral is 360°.

(i1) True (ii1) True (iv) True

(v) False, for example, 7+ 5 =12, which is not an odd number.

. (1) All prime numbers greater than 2 are odd.

(i1) Two times a natural number is always even. (iii) Foranyx>1,3x+1>4.
(iv) Foranyx>0,x’>0.
(v) Inanequilateral triangle, a median is also an angle bisector.

EXERCISE A1.2

. (1) Humans are vertebrates. (ii) No. Dinesh could have got his hair cut by anybody

else. (iii)) Gulaghasaredtongue. (iv) We conclude that the gutters will have to be
cleaned tomorrow.  (v) All animals having tails need not be dogs. For example, animals
such as buffaloes, monkeys, cats, etc. have tails but are not dogs.

. Youneed to turn over B and 8. If B has an even number on the other side, then the rule has

been broken. Similarly, if 8 has a consonant on the other side, then the rule has been
broken.

EXERCISE A1.3

. Three possible conjectures are:

(i) The product of any three consecutive even numbers is even. (ii) The product of
any three consecutive even numbers is divisible by 4.  (iii) The product of any three
consecutive even numbers is divisible by 6.

. Line4:1331=11% Line5:14 64 1=11% the conjecture holds for Line 4 and Line

5; No, because 11° # 15101051.

. T,+T,=25=5 T +T =n’
. 11111127 = 12345654321 ; 1111111% = 1234567654321
. Student’s own answer. For example, Euclid’s postulates.
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ogrgdo Al.d

(1) ©d850. 2.8 $oHBT8 12 Jve.
(ii) BobKE: a8 Bons® HPH® HETEo Ty, TEFPSS).
(ii1) BobKE : Dond® a.86%» HKe sTPE 26° C eotdsy,
(Iv) Qggpir S&so.
(V) o850, HEen DS B,
(Vi) %0858 : OF Sons® Do Jo 29 Serenotin.
(i) oxg0. Sttyuos® wostsmre Ingo 360°.
(11) Qo (ii1) Do (iv) S0
(V) @850, amrsrdend 7+ 5 =12 82 Sogg .
(1) 2808 LS (B Soggel) T Doggen.
(1) 2.8 Seasongsd B0 Y $BV0Y ©HB0B.
(iii) x> 1 oGy x GwE) & ez 3x + 1> 4 0Hdod.
(iv) x>0 edlogen ¥ Gy O DewSBe ¥ = 0 w00k
(V) $oersso (Bghesod® Salfetit B & SIS Metaty B ©H&H0d.
ogrsdo Al.2
(i) SrdHen $E3sren (B5nsnd Ko EHen) (i) 0. OIT erén HVIBT E§OY
GOBERRLS. (1i1) Herh BB a8 BOA God. (iV) sPenden T Hlgo Basred Hoxw

QeBowro. (v) 5%&»?6& o) 20&HHen HEen SPHSIE0 B, GTreSed e, 88&en, degen
FBOHSD &en EOA &0,

9% B 0805 89 STy 0B 2.83¢ B 80835 08 Qogy S08 9 D0 FBoSe.
0BYFore e.83¥ B 7830 ?86@% 08 @ VoHH0 FBoBedtsn.

ra—sa;g:éo Al3

. Qo @*@y‘ﬁaﬁg HBB)de.

(1) OB 3 S HBDogge 020 B0 Hogy, (i) BT 3 HEd 6 Dogge 00 43 grR0SH0B.
(i) DB 3 S ¥ Bogge ©80 63 ePR0BHE08.

45 35508 1133 1=113 55 &8558 : 1464 1=11% 485 S50 508050 5 5B DOBS
$8%008. 11° # 15101051 =298 $80880.

T,+T,=25=5*; T +T =n.

1111112 = 12345654321 ; 11111112 = 1234567654321

Smfgéqa)e) 308 H&rprdo. Suirde chrds ?ocsée)@f’en.



230

Answers

EXERCISEA1.4

. (1) Youcan give any two triangles with the same angles but of different sides.

(i1) A rhombus has equal sides but may not be a square.

(ii1)  Arectangle has equal angles but may not be a square.
(iv) For a =3 and b = 4, the statement is not true.

(v) Forn=11, 2n*+ 11 =253 which is not a prime.

(vi)Forn=41,n*—n + 41 is not a prime.

. Student’s own answer.

. Let x and y be two odd numbers. Then x = 2m +1 for some natural number m and

y=2n+ 1 for some natural number 7.

x+y=2(m+n+1). Therefore, x + y is divisible by 2 and is even.

. SeeQ3.xy=0C2m+1)2n+1)=2C2mn+m+n)+ 1.

Therefore, x y is not divisible by 2, and so it is odd.

. Let 2n, 2n + 2 and 2n + 4 be three consecutive even numbers. Then their sum is

6(n + 1), which is divisible by 6.

. (1) Letyour original number be n. Then we are doing the following operations:

n—2n—2n+9—-2n+ 9+n=3n+9%¥=n+3—>n+3+4=n+7%
n+t7-n=7.
(i1) Note that 7 x 11 x 13 = 1001. Take any three digit number say, abc. Then

abc x 1001 = abcabc. Therefore, the six digit number abcabc is divisible by 7, 11
and 13.

EXERCISE A2.1

. Step 1: Formulation :

The relevant factors are the time period for hiring a computer, and the two costs given to
us. We assume that there is no significant change in the cost of purchasing or hiring the
computer. So, we treat any such change as irrelevant. We also treat all brands and
generations of computers as the same, i.e. these differences are also irrelevant.

The expense of hiring the computer for x months is ¥ 2000x. Ifthis becomes more than
the cost of purchasing a computer, we will be better off buying a computer. So, the
equation is

2000 x= 25000 (1)
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Step 2 : Solution : Solving (1), x = % =125

Step 3 : Interpretation : Since the cost of hiring a computer becomes more after 12.5
months, it is cheaper to buy a computer, if you have to use it for more than 12 months.

. Stepl : Formulation : We will assume that cars travel at a constant speed. So, any

change of speed will be treated as irrelevant. If the cars meet after x hours, the first car
would have travelled a distance of 40x km from A and the second car would have travelled
30x km, so that it will be at a distance of (100 — 30x) km from A. So the equation will be
40x =100 — 30x, i.e., 70x = 100.

Step 2 : Solution : Solving the equation, we get x = %.

Step 3 : Interpretation : % is approximately 1.4 hours. So, the cars will meet after
1.4 hours.

. Stepl: Formulation : The speed at which the moon orbits the earth is

Length of the orbit
Time taken

Step 2 : Solution : Since the orbit is nearly circular, the length is 2 x 7 x 384000 km
=2411520 km

The moon takes 24 hours to complete one orbit.

2811520 _ 100480 km/hour.

So, speed =
Step 3 : Interpretation : The speed is 100480 km/h.

. Formulation : An assumption is that the difference in the bill is only because of using

the water heater.

Let the average number of hours for which the water heater is used = x
Difference per month due to using water heater =<3 1240 — X 1000 =< 240
Cost of using water heater for one hour =% 8

So, the cost of using the water heater for 30 days =8 x 30 x x

Also, the cost of using the water heater for 30 days = Difference in bill due to using
water heater

So, 240x =240
Solution : From this equation, we get x = 1.
Interpretation : Since x = 1, the water heater is used for an average of 1 hour in a day.
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EXERCISE A2.2

1. We will not discuss any particular solution here. You can use the same method as we
used in last example, or any other method you think is suitable.

EXERCISEA2.3

1. We have already mentioned that the formulation part could be very detailed in real-life
situations. Also, we do not validate the answer in word problems. Apart from this word
problem have a ‘correct answer’. This need not be the case in real-life situations.

2. The important factors are (ii) and (iii). Here (i) is not an important factor although it can
have an effect on the number of vehicles sold.
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Class IX

Suggested Pedagogical Processes Learning Outcomes

The learners may be provided with
opportunities individually or in groups
and encouraged to—

e work with real numbers and consolidate
the concepts of numbers learnt in earlier
classes. Some such opportunities
could be:

= to observe and discuss real numbers.

» to recall and observe the processes
involved in different mathematical
concepts studied earlier and find
situations in which they come across
irrational numbers. For example,
finding the length of the diagonal of a
square with side, say, 2 units or area
of a circle with a given radius, etc.

= to observe the properties of different
types of numbers, such as, the
denseness of the numbers, by
devising different methods based on
the knowledge of numbers gained in
earlier classes. One of them could be
by representing them on the number
line.

» to facilitate in making mental
estimations in different situations,
such as, arranging numbers like 2,
212 23/2) 25/2 etc., in ascending (or
descending) order in a given time
frame or telling between which two
integers the numbers like, V17, V23,
V59, — V2, etc., lie.

e apply relevant results to factorise the
polynomials.

e draw and compare the graphs of linear
equations in one or two variables.

e discuss the proofs of mathematical
statements using axioms and
postulates.

e play the following games related to
geometry.
= For Euclid’s axioms, if one group

says, If equals are added to equals,

The learner—

* applies logical reasoning in classifying
real numbers, proving their properties
and using them in different situations.

¢ identifies/classifies polynomials
among algebraic expressions and
factorises them by applying appropriate
algebraic identities.

e relates the algebraic and graphical
representations of a linear equation in
one or two variables and applies the
concept to daily life situations.

¢ identifies similarities and differences
among different geometrical shapes.

o derives proofs of mathematical
statements particularly related to
geometrical concepts, like parallel
lines, triangles, quadrilaterals, circles,
etc., by applying axiomatic approach
and solves problems using them.

e finds areas of all types of triangles by
using appropriate formulae and apply
them in real life situations.

e constructs different geometrical
shapes like bisectors of line segments,
angles and triangles under given

Learning Outcomes at the Secondary Stage &7 |. =




then the results are equal. The other
group may be encouraged to provide
example such as, If a = b, then
a+ 3= b+ 3, another group may extend
it furtheras a+3 +5=b+ 3 + 5, and
SO on.

= By observing different objects in
the surroundings one group may
find the similarities and the other
group may find the differences with
reference to different geometrical
shapes— lines, rays, angles, parallel
lines, perpendicular lines, congruent
shapes, non-congruent shapes, etc.,
and justify their findings logically.
work with algebraic identities using
models and explore the use of algebraic
identities in familiar contexts.
discuss in groups about the properties
of triangles and construction of
geometrical shapes such as, triangles,
line segment and its bisector, angle and
its bisector under different conditions

find and discuss ways to fix position of a
point in a plane and different properties
related to it.

engage in a survey and discuss
about different ways to represent
data pictorially such as, bar graphs,
histograms (with varying base lengths)
and frequency polygons.

collect data from their surroundings
and calculate central tendencies such
as, mean, mode or median.

explore the features of solid objects
from daily life situations to identify
them as cubes, cuboids, cylinders, etc.

play games involving throwing a dice,
tossing a coin, etc., and find their
chance of happening.

do a project of collecting situations
corresponding to different numbers
representing probabilities.

visualise the concepts using Geogebra
and other ICT tools.

conditions and provides reasons for the
processes of such constructions.

develops strategies to locate points in
a Cartesian plane.

identifies and classifies the daily life
situations in which mean, median and
mode can be used.

analyses data by representing it in
different forms like, tabular form
(grouped or ungrouped), bar graph,
histogram (with equal and varying width
and length), and frequency polygon.

calculates empirical probability
through experiments and describes its
use in words.

derives formulae for surface areas and
volumes of different solid objects like,
cubes, cuboids, right circular cylinders/
cones, spheres and hemispheres and
applies them to objects found in the
surroundings.

solves problems that are not in the
familiar context of the child using
above learning. These problems should
include the situations to which the
child is not exposed earlier.

%< Learning Outcomes for Mathematics
1
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