Free distribution by Samagra Shiksha, Government of Andhra Pradesh

Semester @ogb) - 2

Z - (Q2e® 19)SOWSS SOILLYWIHLY SSe|d Ui

fagar s qawsgd

State Council of Educational Research & Training ﬁ

Andhra Pradesh @

NCE&ERT




4 )

2P0 T232,000 - TPV dLven

- 1. U%‘;Soﬁc‘é:o:éé) aatﬁg@ Doy, el 8965053@:63, ‘éo‘(g@é), 2P8OD HTELND, 20D ASSHH FPED0H;

¢ YYYD 2. erBod JBolEs APTeoimE KBRS BYHBEEELORH DB BOHER B eHV0HE;
3. o &° 0, 808085, PO D0B0Hed 0B DoBSohé.

‘ o) 5°6§ oy Sl &80 “:éa@ e B KHoBGoH
‘ ’ 4. BE50H B8ohen Bk EB5HD 88 DS Bowe;
(nx) 5. P8BS (Dese 363655 08, PR, @°oé§o“>3, eété 53_8)652633@63 L IATatANetAR @*’2636&5&63353, AWK grdHn
‘;‘-;“ ofFodoHe, (o ko SRoH BT EENe DETEE;
""\‘ '?a(l, q 6. % & 26026@@50, 5008 doEmraired TED0D E§othe;

S\ 7 OEHeD, VB, Sthew, ©Kd 2odHHos® I @°§e)€§§ $83redy wPars @&é@% Bswey B

e,

308 EHo ke Ehoeae(B8 EOA Hotde.
@@dﬁa CSG)%@EO& Eﬁwéé@@m&)& &as;é:fw, éo@pm é@s@& ROPOBOIDNEKE0;

. (Peze @RV HoBBoiHer, sP0d LT,
Preamble =TT
. 10. (Bohzoen, FEbe éé&éﬁ;o&)o?ﬁ) QBoEBo o8 LoK5en D8, ‘ééb?&q ey 60me§)&oé§8 @g&é
WE, THE PEOPLE OF INPIA, hav.m.g _ S50, S Baot> (IS S HoLST.
solemnly resolved to constitute India into a il 11 ot 08 Smmeth $Sos8E5ne Sk SORS wrerds Sa ard8S 89 Sol@ S SoBEHATHY)
SOVEREIGN SOCIALIST SECULAR DEMOCRATIC REPUBLIC e $58 8505 Soe SoBTmHTEEN B KoSEHIB D wSTEmen ED0SS5B.
and to secure to all its citizens: Sz AN \_ (90880 51 A) /
JUSTICE \ Y
_ : . 4 DS, B0 )
Social, economic and political;
6 K008 14 JoSBTINL DYOOUBBE GG :‘Ocﬁaocﬁ 2OI0d QsgdoBowms ﬁé%’oiﬁa}&é&’). 28

LIBERTY Mo/ @ DBE 1, 2010 5508 ©HSE $D)06.

of thought, expression, belief, faith and worship; / 508D SewgoTen:
EQUALITY N [Flgap ) ﬁgooé&é ©0&0eeNS® PETOO8 DU"Q&D%&J‘@.

. FETO0E STOE SdBo Edyowrd.
of status and of opportunity; and to

HYOOLOA Sc/NE S/ SEHK8S® BOYoTO.
promote among them all SR80 S SERBS® DY S0 G 08 DErdom GodirIS HEgEIED aWyod.
FRATERNITY

©8g8 ©I0T w0 YK QR Fdn YOS IO DEFESFNOTTIS SKSd 0 Jo7NY Bard.
() 0GS® BENF'TAS -0l HOFe0 JBGETroBT . B0 Kdodw, Then Sdres Bobhor.
assuring the dignity of the individual and the unity and ¢
integrity of the Nation; XXX X))

0&S* FOS Dyo D EJIcN K0, ©B SEKBS® TSrNoBE0 BT,
20 FEEEomr, SrSvEom oo,
IN OUR CONSTITUENT ASSEMBLY ‘DID’
this twenty-sixth day of November, 1949, do 1 )

$0%9) ATSe B0, add GHRESH HigTew BII TE00 BE Lyok w&S” BITA) AT EDHT .
\
HEREBY ADOPT, ENACT AND GIVE TO TIx

A8 ©8 Seod) TB SFER ST oS0 JoHDM0TS.

Dyen IS @"53%“503 FHoVer FETFO0, Sorergosso womd.

AOIvowd Dy FrESgHsE DB Jerodd & HFwo JEGTrosT .

ST HoSET R0 FYoNSHBEY, JOIowd Dy FYSFgHEE FETOS® Dywd FSI S
RIS $To¥, H8Ere H0JHODR BT L) BT BosS DY J IF ISESL HosTLow
SrEed.

® orargooeSt FooNBAS Jeosedy wloreon, ;’)a"gégoéo 30500, oS FIE KBTI 58S 8

\_ DS B0 DR8 F'EHR FEGHeT 98 Srrodomrd. /




MATHEMATICS
Class IX (Semester - 2)

Text Book Development Committee

Sri Praveen Prakash IAS Sri. S. Suresh Kumar 1AS
Principal Secretary to Government Commissioner of School Education , AP
Department of School Education, AP

Sri. B. Srinivasa Rao IAS sri. K. Ravindranath Reddy MA., B.Ed.
State Project Director, Samagra Shiksha, AP Director, Government Textbook Press, AP

Dr. B. Pratap Reddy MA., B.Ed.,, Ph.D.
Director, SCERT, AP

Programme Co-ordinators

Dr. G. Kesava Reddy, MSc, MSc, MEd, MPhil, PhD
Prof. C&T, SCERT, AP

Subject Co-ordinators

Sri. K. Satish Babu Sri. S. Satish
Professor, SCERT, AP Leturer in Mathematics, SCERT, AP

Technical Co-ordinator

Dr. Ch.V.S. Ramesh Kumar
Faculty, SCERT, AP

fagan s gansgd

State Council of Educational Research & Training
Andhl'a Pl'adeSh oAt E Rt

NCSERT

Published by Samagra Shiksha, Government of Andhra Pradesh, Amaravati.




© Government of Andhra Pradesh, Amaravati

First Published - 2023
New Impression - 2024

All rights reserved

No part of this publication may be
reproduced, stored in a retrieval system, or
transmitted, in any form or by any means
without the prior permission in writing of the
publisher, nor be otherwise circulated in any
form of binding or cover other than that in
which it is published and without a similar
condition including this condition being
imposed on the subsequent purchaser.

The copy right holder of this book is the
Commissioner of School Education,
Amaravati, Andhra Pradesh.

This book has been printed on 70 G.S.M. SS Maplitho
Title Page 220 G.S.M. White Art Card

CFree distribution by Samagra Shiksha, Government of Andhra Prades9

Printed in India
atthe A.P. Govt. Textbook Press
Amaravati
Andhra Pradesh

ii




Sri G Bhaskar Reddy, SA (Maths),
ZPHS, Venkatagiri, Tirupati

Sri P. Ravi Sankar, SA (Maths),
ZPHS, Komaragiri, Kakinada

Sri. Sd. Shahinsha, SA (Maths), MPLHS,
Ch.R. Palem, Bhimavaram, West Godavari

Sri K. Madhusudhan, TGT (Maths),
APMS, Bandi Atmakur, Nandyal

Smt. M. Sandhya Rani, SA (Maths),
KGBY, Gurla, Vizianagaram

Dr. D.S.N. Sastry, Rtd. Principal,
AJ College of Education, Machilipatnam

Dr. P. Satyanarayana Sarma, Rtd. Lecturer,
Montessori College of Education, Vijayawada

Sri. S. Mahesh, PGT,
INV, Visakhapatnam (CBSE)

Translators

Designing & Page Layout : Stock Assortment, Bapatla.

Sri A. Appanna, Lecturer (D),
DIET, Srikakulam

Smt. Y. Jaya Bharati, SA (Maths),
ZPHS (G), Giddalur, Prakasam

Dr. Ch. Ramesh, SA (Maths),
MPUPS, Vallabharaopalem, Guntur

Sri. H. Aruna siva Prasad, SA (Maths),
ZPHS, Mangalapalli, Chittoor

Smt. P. Vijaya Kumari, TGT (Maths),
APMS, Dechavaram, Guntur

Sri. N. Prasad Babu, SA (Maths),
ZPHS, Agiripalli, Eluru

Editors for Translation

Sri. Kesiraju Srinivas
Professor, SCERT, A.P

Sri. M. Somasekhara Brahmanandam
Faculty, SCERT, A.P

Sri. A.S.V. Prabhakar
Faculty, SCERT, A.P

iii




FOREWORD

The National Curriculum Framework (NCF) 2005, recommends that children’s life at school
must be linked to their life outside the school. This principle marks a departure from the
legacy of bookish learning which continues to shape our system and causes a gap between the
school, home and community. The syllabi and textbooks developed on the basis of NCF signify
an attempt to implement this basic idea. They also attempt to discourage rote learning and the
maintenance of sharp boundaries between different subject areas. We hope these measures
will take us significantly further in the direction of a child-centred system of education
outlined in the national Policy on Education (1986).

The success of this effort depends on the steps that school principals and teachers will take
to encourage children to reflect on their own learning and to pursue imaginative activities and
questions. We must recognize that, given space, time and freedom, children generate new
knowledge by engaging with the information passed on to them by adults. Treating the prescribed
textbook as the sole basis of examination is one of the key reasons why other resources and
sites of learning are ignored. Inculcating creativity and initiative is possible if we perceive and
treat children as participants in learning, not as receivers of a fixed body of knowledge.

This aims imply considerable change is school routines and mode of functioning. Flexibility
in the daily time-table is as necessary as rigour in implementing the annual calendar so that the
required number of teaching days are actually devoted to teaching. The methods used for teaching
and evaluation will also determine how effective this textbook proves for making children’s
life at school a happy experience, rather then a source of stress or boredom. Syllabus designers
have tried to address the problem of curricular burden by restructuring and reorienting knowledge
at different stages with greater consideration for child psychology and the time available for
teaching. The textbook attempts to enhance this endeavour by giving higher priority and space
to opportunities for contemplation and wondering, discussion in small groups, and activities
requiring hands-on experience.

The National Council of Educational Research and Training (NCERT) appreciates the hard
work done by the textbook development committee responsible for this book. We wish to
thank the Chairperson of the advisory group in science and mathematics, Professor J.V. Narlikar
and the Chief Advisor for this book, Professor P. Sinclair of IGNOU, New Delhi for guiding the
work of this committee. Several teachers contributed to the development of this textbook; we



are grateful to their principals for making this possible. We are indebted to the institutions and
organizations which have generously permitted us to draw upon their resources, material and
personnel. We are especially grateful to the members of the National Monitoring Committee,
appointed by the Department of Secondary and Higher Education, Ministry of Human Resource
Development under the Chairpersonship of Professor Mrinal Miri and Professor G.P.
Deshpande, for their valuable time and contribution. As an organisation committed to systemic
reform and continuous improvement in the quality of its products, NCERT welcomes comments
and suggestions which will enable us to undertake further revision and refinement.

Director
New Delhi National Council of Educational
20 December 2005 Research and Training






RATIONALISATION OF CONTENT IN THE TEXTBOOKS

In view of the COVID-19 pandemic, it is imperative to reduce content load on students. The

National Education Policy 2020, also emphasises reducing the content load and providing

opportunities for experiential learning with creative mindset. In this background, the NCERT

has undertaken the exercise to rationalise the textbooks across all classes. Learning Outcomes

already developed by the NCERT across classes have been taken into consideration in this

exercise.

Contents of the textbooks have been rationalised in view of the following:

Overlapping with similar content included in other subject areas in the same class
Similar content included in the lower or higher class in the same subject
Difficulty level

Content, which is easily accessible to students without much interventions from teachers
and can be learned by children through self-learning or peer-learning

Content, which is irrelevant in the present context

This present edition, is a reformatted version after carrying out the changes given above.

Vii
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CHAPTER 7

TRIANGLES
I

7.1 Introduction

You have studied about triangles and their various properties in your earlier classes. You know
that a closed figure formed by three intersecting lines is called a triangle. (‘Tri’ means ‘three”).
A triangle has three sides, three angles and three vertices. For example, in triangle ABC, denoted
as AABC (see Fig. 7.1); AB, BC, CA are the three sides, £ A, Z B, Z C are the three angles and
A, B, C are three vertices.

In Chapter 6, you have also studied some properties of A

triangles. In this chapter, you will study in details about the

congruence of triangles, rules of congruence, some more

properties of triangles and inequalities in a triangle. You have

already verified most of these properties in earlier classes.

We will now prove some of them. B C
Fig. 7.1

7.2 Congruence of Triangles

You must have observed that two copies of your photographs of the same size are identical.
Similarly, two bangles of the same size, two ATM cards issued by the same bank are identical.
You may recall that on placing a one rupee coin on another minted in the same year, they cover
each other completely.

Do you remember what such figures are called? Indeed they are called congruent figures
(‘congruent’ means equal in all respects or figures whose shapes and sizes are both the same).

Now, draw two circles of the same radius and place one on the other. What do you observe?
They cover each other completely and we call them as congruent circles.
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4 TRIANHLES

Repeat this activity by placing one square on the other
with sides of the same measure (see Fig. 7.2) or by placing
two equilateral triangles of equal sides on each other. You
will observe that the squares are congruent to each other

and so are the equilateral triangles. Fig. 7.2

You may wonder why we are studying congruence. You all must have seen the ice tray in
your refrigerator. Observe that the moulds for making ice are all congruent. The cast used for
moulding in the tray also has congruent depressions (may be all are rectangular or all circular
or all triangular). So, whenever identical objects have to be produced, the concept of congruence
is used in making the cast.

Sometimes, you may find it difficult to replace the refill in your pen by a new one and this
is so when the new refill is not of the same size as the one you want to remove. Obviously, if the
two refills are identical or congruent, the new refill fits.

So, you can find numerous examples where congruence of objects is applied in daily life
situations.

Can you think of some more examples of congruent figures?

Now, which of the following figures are not congruent to the square in
Fig 7.3 (1) :

@) (i) (iir) (iv)
Fig. 7.3

The large squares in Fig. 7.3 (ii) and (iii) are obviously not congruent to the one in Fig
7.3 (i), but the square in Fig 7.3 (iv) is congruent to the one given in Fig 7.3 (i).

Let us now discuss the congruence of two triangles.

You already know that two triangles are congruent if the sides and angles of one triangle are
equal to the corresponding sides and angles of the other triangle.
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6 TRIANHLES

Now, which of the triangles given below are congruent to triangle ABC in
Fig. 7.4 (1)?

R 5cm Q

M 4em

S cm

(iv)
Fig. 7.4

Cut out each of these triangles from Fig. 7.4 (ii) to (v) and turn them around and try to cover
A ABC. Observe that triangles in Fig. 7.4 (ii), (ii1) and (iv) are congruent to A ABC while A TSU
of Fig 7.4 (v) is not congruent to A ABC.

If APQR is congruent to A ABC, we write A PQR = A ABC.

Notice that when A PQR = A ABC, then sides of A PQR fall on corresponding equal sides of
A ABC and so is the case for the angles.

That is, PQ covers AB, QR covers BC and RP covers CA; £ P covers £ A,
Z Q covers Z B and Z R covers £ C. Also, there is a one-one correspondence between the
vertices. That is, P corresponds to A, Q to B, R to C and so on which is written as

PoA QB ReC

Note that under this correspondence, A PQR = A ABC; but it will not be correct to write
AQRP=A ABC.

Similarly, for Fig. 7.4 (iii),



Bhazeen 7

)¢ 8ob (Bsheros® O (B8H 20, Hewo 7.4 (1) Bveo ABC 8 D8R8eK507?

455Q@.

(iv) Sevo. 7.4

H80 7.4 & &) (i) 008 (V) $85 &) o) (Bgherodn 800D, @ Bgherod @Ipdr A ABC &°
D82500Bey Bobol. Heo. 7.4 (ii), (iii) 85w (iv) (@berenr A ABC 8 $ssmis0 ed@mon. 29 6o
7.4 (v) & &3y A TSU s@o A ABC 8 5850580 506,

APQR 8 38580 @awd, A PQR = A ABC e oorro.

APQR = A ABC w008 A PQR &) ghemen 50805 Sesren A ABC 8 S0 @and @drs)
ghegeen L1000 058RS Elereos® HEHDI0DH KJoS0&.

008 PQ & AB,QR 8* BC 800 RP& CA; LP & LA, £LQ& L/B%odoiw LR& LCe
Ebéeﬁs’)@jo}). a8)& %ng G5 A8 - D BoOGFO GoLnod. WP %Eélo P '%E(SQO A, Q& B R&C
H&5DJaw. HAD & DFore ToRro.

PoA QB ReC
28% APQR = A ABC; ©9%08 =20, AQRP = A ABC v oeahibo 8 ©0h&0b.

@a3QPore Hevo 7.4 (iii) &5,



8 TRIANHLES

FD <> AB,DE <> BC andEF <> CA
and F&A, DB andE«~C
So, AFDE = A ABC but writing A DEF = A ABC is not correct.
Give the correspondence between the triangle in Fig. 7.4 (iv) and A ABC.

So, it is necessary to write the correspondence of vertices correctly for writing of congruence
of triangles in symbolic form.

Note that in congruent triangles corresponding parts are equal and we write in short
‘CPCT’ for corresponding parts of congruent triangles.

7.3 Criteria for Congruence of Triangles

In earlier classes, you have learnt four criteria for congruence of triangles. Let us recall them.

Draw two triangles with one side 3 cm. Are these triangles congruent? Observe that they are
not congruent (see Fig. 7.5).

D
A
3
1.8 cm o
3cm
B C E t F

24 cm
@) (i1)
Fig. 7.5

Now, draw two triangles with one side 4 cm and one angle 50° (see Fig. 7.6). Are they

P
A
/\ /
B cC Q R

4 cm 4 cm

congruent?

Fig. 7.6
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See that these two triangles are not congruent.
Repeat this activity with some more pairs of triangles.

So, equality of one pair of sides or one pair of sides and one pair of angles is not sufficient
to give us congruent triangles.

What would happen if the other pair of arms (sides) of the equal angles are also equal?

InFig7.7, BC=QR, £ B= 2 Qandalso, AB=PQ. Now, what can you say about congruence
of AABCand A PQR?

Recall from your earlier classes that, in this case, the two triangles are congruent. Verify
this for A ABC and APQR in Fig. 7.7.

Repeat this activity with other pairs of triangles. Do you observe that the equality of two
sides and the included angle is enough for the congruence of triangles? Yes, it is enough.

A P
'~ S
" 0
50° 50°
R
B 4 cm ¢ Q 4 cm
Fig. 7.7

This is the first criterion for congruence of triangles.

Axiom 7.1 (SAS congruence rule) : Two triangles are congruent if two sides and the included
angle of one triangle are equal to the two sides and the included angle of the other triangle.

This result cannot be proved with the help of previously known results and so it is accepted
true as an axiom (see Appendix 1).

Let us now take some examples. C ’
Example 1 : In Fig. 7.8, OA= OB and OD = OC. Show that 5
(i))AAOD=ABOCand (ii)AD| BC.
Solution : (i) You may observe thatin A AOD and A BOC, A D
OA=0B } (Given) Fig. 7.8
OD=0C
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Also, since £ AOD and £ BOC form a pair of vertically opposite angles, we have
ZAOD= ZBOC.
So, AAOD = ABOC(by the SAS congruence rule)
(i1) In congruent triangles AOD and BOC, the other corresponding parts are also equal.
So, ZOAD = £ OBC and these form a pair of alternate angles for line segments AD and BC.
Therefore, AD | BC.

Example 2 : AB is a line segment and line / is its perpendicular bisector. If a point P lies on /,
show that P is equidistant from A and B.

Solution : Line / L AB and passes through C which is the mid-
point of AB (see Fig. 7.9). You have to show that PA=PB. Consider
APCA and A PCB. 3

Wehave AC = BC(C is the mid-point of AB)
/ZPCA= ZPCB=90° (Given)
PC=PC (Common)
So, APCA=APCB (SASrule)

and so, PA = PB, as they are corresponding sides of congruent
triangles. Fig. 7.9

Now, let us construct two triangles, whose sides are 4 cm and 5 cm and one of the angles is
50° and this angle is not included in between the equal sides (see Fig. 7.10). Are the two triangles
congruent?

Scem 5cm

4 cm 4 cm

Fig. 7.10
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Notice that the two triangles are not congruent.

Repeat this activity with more pairs of triangles. You will observe that for triangles to be
congruent, it is very important that the equal angles are included between the pairs of equal
sides.

So, SAS congruence rule holds but not ASS or SSA rule.

Next, try to construct the two triangles in which two angles are 60° and 45° and the side
included between these angles is 4 cm (see Fig. 7.11).

4 ¢cm 4 cm

Fig. 7.11

Cut out these triangles and place one triangle on the other. What do you observe?
See that one triangle covers the other completely; that is, the two triangles are congruent.
Repeat this activity with more pairs of triangles. You will observe that equality of two angles
and the included side is sufficient for congruence of triangles.

This result is the Angle-Side-Angle criterion for congruence and is written as ASA criterion.
You have verified this criterion in earlier classes, but let us state and prove this result.

Since this result can be proved, it is called a theorem and to prove it, we use the SAS axiom
for congruence.

Theorem 7.1 (ASA congruence rule) : Two triangles are congruent if two angles and the
included side of one triangle are equal to two angles and the included side of other triangle.

Proof : We are given two triangles ABC and DEF in which:
/B= ZE,£C=/F

and BC= EF

We need to prove that AABC= ADEF

For proving the congruence of the two triangles see that three cases arise.
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Case (i) : Let AB = DE (see Fig. 7.12).

Now what do you observe? You may observe that

AB= DE (Assumed)
/ZB=/E (Given)
BC = EF (Given)
So, A ABC= ADEF (By SAS rule)
A D
B ; C E f F
Fig. 7.12

Case (ii) : Let if possible AB > DE. So, we can take a point P on AB such that
PB =DE. Now consider A PBC and A DEF (see Fig. 7.13).

A D

} F
Observe that in APBC and A DEF,
PB =DE (By construction)
/ZB=Z/E (Given)
BC =EF (Given)

So, we can conclude that:

A PBC = A DEF, by the SAS axiom for congruence.
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Since the triangles are congruent, their corresponding parts will be equal.

So, Z PCB= ZDFE
But, we are given that

Z ACB= ZDFE
So, ZACB= ZPCB

Is this possible?

This is possible only if P coincides with A.

or, BA=ED

So, AABC= ADEF (by SAS axiom)

Case (iii) : fAB <DE, we can choose a point M on DE such that ME = AB and repeating the
arguments as given in Case (ii), we can conclude that AB=DE and so, A ABC =z A DEF.

Suppose, now in two triangles two pairs of angles and one pair of corresponding sides are
equal but the side is not included between the corresponding equal pairs of angles. Are the
triangles still congruent? You will observe that they are congruent. Can you reason out why?

You know that the sum of the three angles of a triangle is 180°. So if two pairs of angles are
equal, the third pair is also equal (180° — sum of equal angles).

So, two triangles are congruent if any two pairs of angles and one pair of corresponding
sides are equal. We may call it as the AAS Congruence Rule.

Now let us perform the following activity :
Draw triangles with angles 40°, 50° and 90°. How many such triangles can you draw?

In fact, you can draw as many triangles as you want with different lengths of sides
(see Fig. 7.14).

|4

Fig. 7.14
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Observe that the triangles may or may not be congruent to each other.

So, equality of three angles is not sufficient for congruence of triangles. Therefore, for

congruence of triangles out of three equal parts, one has to be a side.

Let us now take some more examples.

Example 3 : Line-segment AB is parallel to another line-segment CD. O is the
mid-point of AD (see Fig. 7.15). Show that (i) AAOB = ADOC (ii) O is also the

mid-point of BC.
Solution : (i) Consider A AOB and A DOC.
ZABO= ZDCO
(Alternate angles as AB || CD
and BC is the transversal)
ZAOB= 2ZDOC
(Vertically opposite angles)

OA= 0D (Given)
Therefore, AAOB= ADOC (AAS rule)
(i1) OB = 0C (CPCT)

So, O is the mid-point of BC.

EXERCISE 7.1

1. Inquadrilateral ACBD,

AC =AD and AB bisects £ A (see Fig. 7.16). Show
that A ABC =A ABD.

What can you say about BC and BD?

>
vs)

Fig. 7.15

Fig. 7.16
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. ABCD is a quadrilateral in which AD = BC and

/ DAB= Z CBA (see Fig. 7.17). Prove that
(i) AABD=ABAC

(i))BD=AC

(iii)) ZABD=Z/BAC.

. ADand BC are equal perpendiculars to a line segment AB

(see Fig. 7.18). Show that CD bisects AB.

. land m are two parallel lines intersected by another pair of

parallel lines p and ¢ (see Fig. 7.19). Show that A ABC = A
CDA.

. Line/is the bisector of an angle £ A and B is any point on

[. BP and BQ are perpendiculars from B to the arms of £ A
(see Fig. 7.20). Show that:

(i) AAPB=ZAAQB
(i1)BP = BQ or B is equidistant from the arms
of ZA.

Fig. 7.19

Q i
B

N P ?
Fig. 7.20
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6. In Fig. 7.21, AC = AE, AB = AD and E
Z BAD= ZEAC. Show that BC=DE. A
B D C
Fig. 7.21
7. AB is aline segment and P is its mid-point. D E D

and E are points on the same side of AB such
that/ BAD = £ ABE and £ EPA = £ DPB
(see Fig. 7.22). Show that

(i) ADAP = A EBP A b B
(i))AD=BE Fig. 7.22
8. Inright triangle ABC, right angled at C, M is the D A

mid-point of hypotenuse AB. C is joined to M
and produced to a point D such that DM = CM.

Point D is joined to point B (see Fig. 7.23). Show M
that:
: B ¢
(i) AAMC =ABMD
Fig. 7.23
(if) 2 DBC is a right angle. s

(i) ADBC=AACB
(v) CM= % AB

7.4 Some Properties of a Triangle

In the above section you have studied two criteria for congruence of triangles. Let us now apply
these results to study some properties related to a triangle whose two sides are equal.
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A

Perform the activity given below:

Construct a triangle in which two sides are equal, say each 3.5cm 3.5cm
equal to 3.5 cm and the third side equal to 5 cm (see Fig. 7.24).
You have done such constructions in earlier classes. B c

Scm
Do you remember what is such a triangle called?
Fig. 7.24

A triangle in which two sides are equal is called an isosceles
triangle. So, A ABC of Fig. 7.24 is an isosceles triangle with
AB=AC.

Now, measure £ B and £ C. What do you observe?
Repeat this activity with other isosceles triangles with different sides.
You may observe that in each such triangle, the angles opposite to the equal sides are equal.

This is a very important result and is indeed true for any isosceles triangle. It can be proved
as shown below.

Theorem 7.2 : Angles opposite to equal sides of an isosceles triangle are equal.

This result can be proved in many ways. One of the proofs is

A
given here.
Proof : We are given an isosceles triangle ABC in which
AB =AC. We need to prove that L/ B= £ C.
Let us draw the bisector of £ A and let D be the point of b D ¢
intersection of this bisector of £ A and BC (see Fig. 7.25). Fig. 7.25
InABAD and ACAD,
AB=AC (Given)
ZBAD= ZCAD (By construction)
AD=AD (Common)
So, ABAD = ACAD (By SAS rule)

So, £ ABD = Z ACD, since they are corresponding angles of congruent triangles.
So, ZB=/C
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Is the converse also true? That is:

If two angles of any triangle are equal, can we conclude that the sides opposite to them are
also equal?

Perform the following activity.

Construct a triangle ABC with BC of any length and £ B =2 C=50°. Draw the bisector of
Z Aand let it intersect BC at D (see Fig. 7.26).

Cut out the triangle from the sheet of paper and fold it along AD so that vertex C falls on

vertex B.

What can you say about sides AC and AB? A

Observe that AC covers AB completely

So, AC=AB

Repeat this activity with some more triangles. Each time B o0 oV c
you will observe that the sides opposite to equal angles are equal. Fig].) T 96

So we have the following:
Theorem 7.3 : The sides opposite to equal angles of a triangle are equal.
This is the converse of Theorem 7.2.
You can prove this theorem by ASA congruence rule.

Let us take some examples to apply these results.

Example 4 : In A ABC, the bisector AD of £ A is perpendicular to side BC
(see Fig. 7.27). Show that AB = AC and A ABC is isosceles.

Solution : In AABD and AACD,

Z/BAD= /CAD (Given) N
AD= AD (Common)
Z ADB= Z ADC=90° (Given)
So, AABD= AACD (ASA rule)
So,  AB=AC (CPCT) B D ¢

or, A ABC isan isosceles triangle. Fig. 7.27
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Example 5 : E and F are respectively the mid-points of equal sides A
AB and AC of A ABC (see Fig. 7.28). Show that BF = CE.

Solution : In A ABF and A ACE, B F
AB= AC (Given)

LA=ZA (Common)

AF = AE (Halves of equal sides)

So, AABF= AACE (SAS rule)
Therefore, BF= CE (CPCT)

Example 6 : In an isosceles triangle ABC with AB=AC, D and E are points on BC such that BE
=CD (see Fig. 7.29). Show that AD = AE.

Fig. 7.28

Solution : In A ABD and A ACE, A
AB= AC (Given) (1)
/ZB=/C
(Angles opposite to equal sides) (2)
Also,  BE=CD o €
So, BE-DE=CD-DE Fig. 7.29
That is, BD= CE (3)

So,  AABD= AACE
(Using (1), (2), (3) and SAS rule).

This gives AD= AE (CPCT)
EXERCISE 7.2
1. Inanisosceles triangle ABC, with AB = AC, the bisectors of £ B and £ C intersect each
other at O. Join A to O. Show that : A
(i) OB=0C (i1) AO bisects LA

2. In A ABC, AD is the perpendicular bisector of BC (see Fig.
7.30). Show that A ABC is an isosceles triangle in which
AB=AC. B C

Fig. 7.30
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. ABC s anisosceles triangle in which altitudes BE and

CF are drawn to equal sides AC and AB respectively
(see Fig. 7.31). Show that these altitudes are equal.

. ABC isatriangle in which altitudes BE and CF to sides

AC and AB are equal (see Fig. 7.32). Show that
(i) AABE=A ACF
(i1)AB=AC, i.e., ABC s an isosceles triangle.

. ABC and DBC are two isosceles triangles on the same

base BC (see Fig. 7.33). Show that
Z ABD=Z/ACD.

. AABC s anisosceles triangle in which AB =AC. Side

BA is produced to D such that AD = AB
(see Fig. 7.34). Show that £ BCD is a right angle.

. ABC is aright angled triangle in which £ A=90° and

AB=AC.Find ZBand ZC.

. Show that the angles of an equilateral triangle are 60°

each.

Fig. 7.34
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7.5 Some More Criteria for Congruence of Triangles

You have seen earlier in this chapter that equality of three angles of one triangle to three angles
of the other is not sufficient for the congruence of the two triangles. You may wonder whether
equality of three sides of one triangle to three sides of another triangle is enough for congruence
of the two triangles. You have already verified in earlier classes that this is indeed true.

To be sure, construct two triangles with sides 4 cm, 3.5 cm and 4.5 cm
(see Fig. 7.35). Cut them out and place them on each other. What do you observe? They cover
each other completely, if the equal sides are placed on each other. So, the triangles are congruent.

4 cm

3.5cm 4.5 cm
4.5 cm 3.5cm

4 cm
Fig. 7.35

Repeat this activity with some more triangles. We arrive at another rule for congruence.

Theorem 7.4 (SSS congruence rule) : If three sides of one triangle are equal to the three
sides of another triangle, then the two triangles are congruent.

This theorem can be proved using a suitable construction.

You have already seen that in the SAS congruence rule, the pair of equal angles has to be the
included angle between the pairs of corresponding pair of equal sides and if this is not so, the
two triangles may not be congruent.

Perform this activity:

Construct two right angled triangles with hypotenuse equal to 5 cm and one side equal to 4
cm each (see Fig. 7.36).
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5cm 5cm

4 cm 4 cm

Fig. 7.36

Cut them out and place one triangle over the other with equal side placed on each other. Turn
the triangles, if necessary. What do you observe?

The two triangles cover each other completely and so they are congruent. Repeat this activity
with other pairs of right triangles. What do you observe?

You will find that two right triangles are congruent if one pair of sides and the hypotenuse
are equal. You have verified this in earlier classes.

Note that, the right angle is not the included angle in this case.

So, you arrive at the following congruence rule:

Theorem 7.5 (RHS congruence rule) : If in two right triangles the hypotenuse and one
side of one triangle are equal to the hypotenuse and one side of the other triangle, then the
two triangles are congruent.

Note that RHS stands for Right angle - Hypotenuse - Side.

Let us now take some examples. P
Example 7 : ABis a line-segment. P and Q are points on opposite / \\
sides of AB such that each of them is equidistant from the points A A c B
and B (see Fig. 7.37). Show that the line PQ is the perpendicular

bisector of AB.

Solution : You are given that PA=PB and QA= QB and you are to
show that PQ 1 AB and PQ bisects AB. Let PQ intersect AB at C.

Q

o Fig. 7.37
Can you think of two congruent triangles in this figure?

Let us take A PAQ and A PBQ.

In these triangles,
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AP = BP (Given)
AQ=BQ (Given)
PQ =PQ (Common)
So, APAQ=APBQ (SSS rule)
Therefore, Z APQ= ZBPQ (CPCT).
Now let us consider A PAC and A PBC.
You have : AP = BP (Given)
Z APC= Z BPC(£ APQ = £ BPQ proved above)
PC=PC (Common)
So, APAC= APBC (SAS rule)
Therefore, AC=BC (CPCT) (1)
and Z ACP= ZBCP (CPCT)
Also, ZACP+ £ BCP= 180° (Linear pair)
So, 2/ ACP =180°
or, Z ACP =90° (2)

From (1) and (2), you can easily conclude that PQ is the perpendicular bisector of AB.
[Note that, without showing the congruence of A PAQ and A PBQ, you cannot show that

APAC = APBC even though AP=BP (Given)
PC=PC (Common)
and 2 PAC = Z PBC(Angles opposite to equal sides in
AAPB)

It is because these results give us SSA rule which is not always valid or true for congruence of
triangles. Also the angle is not included between the equal pairs of sides.]

Let us take some more examples.

Example 8 : P is a point equidistant from two lines / and m intersecting at point A
(see Fig. 7.38). Show that the line AP bisects the angle between them.

Solution : You are given that lines / and m intersect each otherat A. LetPB L /, PC L m. Itis
given that PB =PC.

You are to show that ~/ PAB = / PAC.
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Let us consider A PAB and A PAC. In these two triangles,

PB = PC (Given) \/}3{
/PBA=/PCA=90° (Given) .

‘A P
PA=PA (Common) C
So, APAB = APAC (RHS rule) "
Fig. 7.38
So, ZPAB=/PAC (CPCT)

Note that this result is the converse of the result proved in Q.5 of Exercise 7.1.

EXERCISE 7.3

1. A ABCand A DBC are two isosceles triangles on the same A
base BC and vertices A and D are on the same side of BC
(see Fig. 7.39). If AD is extended to intersect BC at P, show
that

(i) AABD=AACD B : C
(i))A ABP=A ACP Fig. 7.39
(iii) APbisects £ Aaswell as ZD.

(iv) AP is the perpendicular bisector of BC.
2. ADis an altitude of an isosceles triangle ABC in which AB = AC. Show that
(1) AD bisects BC (i) AD bisects £ A.

A P
3. Twosides AB and BC and median AM of one triangle
ABC are respectively equal to sides PQ and QR and
median PN of A PQR (see Fig. 7.40). Show that: B Q
M C N R

(i) AABM=APQN
(ii)A ABC =A PQR

Fig. 7.40

4. BE and CF are two equal altitudes of a triangle ABC. Using RHS congruence rule, prove
that the triangle ABC is isosceles.

5. ABC s anisosceles triangle with AB=AC. Draw AP | BCto show that / B=/C.
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7.6 Summary

In this chapter, you have studied the following points :

1.

0w P

10.
11.

12.

Two figures are congruent, if they are of the same shape and of the same size.
Two circles of the same radii are congruent.
Two squares of the same sides are congruent.

If two triangles ABC and PQR are congruent under the correspondence A <> P,
B <> Qand C <> R, then symbolically, it is expressed as A ABC = A PQR.

If two sides and the included angle of one triangle are equal to two sides and the included
angle of the other triangle, then the two triangles are congruent (SAS Congruence Rule).

If two angles and the included side of one triangle are equal to two angles and the included
side of the other triangle, then the two triangles are congruent (ASA Congruence Rule).

If two angles and one side of one triangle are equal to two angles and the corresponding
side of the other triangle, then the two triangles are congruent (AAS Congruence Rule).

Angles opposite to equal sides of a triangle are equal.
Sides opposite to equal angles of a triangle are equal.
Each angle of an equilateral triangle is of 60°.

If three sides of one triangle are equal to three sides of the other triangle, then the two
triangles are congruent (SSS Congruence Rule).

If in two right triangles, hypotenuse and one side of a triangle are equal to the hypotenuse
and one side of other triangle, then the two triangles are congruent (RHS Congruence Rule).
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CHAPTER 8

QUADRILATERALS
I

8.1 Properties of a Parallelogram

You have already studied quadrilaterals and their types in Class VIII. A quadrilateral has four
sides, four angles and four vertices. A parallelogram is a quadrilateral in which both pairs of
opposite sides are parallel.

Let us perform an activity.

Cut out a parallelogram from a sheet of paper and cut it along
a diagonal (see Fig. 8.1). You obtain two triangles. What can
you say about these triangles?

Place one triangle over the other. Turn one around, if necessary. A”
What do you observe? Fig. 8.1

Observe that the two triangles are congruent to each other.

Repeat this activity with some more parallelograms. Each time you will observe that each
diagonal divides the parallelogram into two congruent triangles.

Let us now prove this result.
Theorem 8.1 : A diagonal of a parallelogram divides it into two congruent triangles.

Proof : Let ABCD be a parallelogram and AC be a diagonal (see Fig. 8.2). Observe that the
diagonal AC divides parallelogram ABCD into two triangles, namely, A ABC and A CDA. We
need to prove that these triangles are congruent.
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In A ABC and A CDA, note that BC || AD and AC is a transversal.

So, ZBCA=ZDAC(Pair of alternate angles) D ¢
Also, AB || DC and AC is a transversal.

So, ZBAC=ZDCA(Pair of alternate angles)

and AC=CA (Common) A ess U
So, AABC=ACDA (ASA rule)

or, diagonal AC divides parallelogram ABCD into two congruent

triangles ABC and CDA.

Now, measure the opposite sides of parallelogram ABCD. What do you observe?
You will find that AB=DC and AD = BC.
This is another property of a parallelogram stated below:

Theorem 8.2 : In a parallelogram, opposite sides are equal.

You have already proved that a diagonal divides the parallelogram into two congruent triangles;
so what can you say about the corresponding parts say, the corresponding sides? They are equal.
So, AB=DC and AD=BC

Now what is the converse of this result? You already know that whatever is given in a theorem,

the same is to be proved in the converse and whatever is proved in the theorem it is given in the
converse. Thus, Theorem 8.2 can be stated as given below :

If a quadrilateral is a parallelogram, then each pair of its opposite sides is equal. So its
converse is :

Theorem 8.3 : If each pair of opposite sides of a quadrilateral is equal, then it is a

parallelogram.
Can you reason out why? Y, ’ ¢
Let sides AB and CD of the quadrilateral ABCD be equal and
also AD=BC (see Fig. 8.3). Draw diagonal AC.
Clearly, AABC= ACDA (Why?) N g
So, ZBAC= ZDCA _—

and ZBCA= ZDAC (Why?)
Can you now say that ABCD is a parallelogram? Why?
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You have just seen that in a parallelogram each pair of opposite sides is equal and conversely
if each pair of opposite sides of a quadrilateral is equal, then it is a parallelogram. Can we
conclude the same result for the pairs of opposite angles?

Draw a parallelogram and measure its angles. What do you observe?
Each pair of opposite angles is equal.

Repeat this with some more parallelograms. We arrive at yet another result as given below.

Theorem 8.4 : In a parallelogram, opposite angles are equal.

Now, is the converse of this result also true? Yes. Using the angle sum property of a
quadrilateral and the results of parallel lines intersected by a transversal, we can see that the
converse is also true. So, we have the following theorem :

Theorem 8.5 : If in a quadrilateral, each pair of opposite angles is equal, then it is a
parallelogram.

There is yet another property of a parallelogram. Let us study the same. Draw a parallelogram
ABCD and draw both its diagonals intersecting at the point O (see Fig. 8.4).

Measure the lengths of OA, OB, OC and OD. 7 C
What do you observe? You will observe that
OA=0C and OB=O0D.
or, O isthe mid-point of both the diagonals. P o
Repeat this activity with some more parallelograms. . B
Fig. 8.4

Each time you will find that O is the mid-point of
both the diagonals.

So, we have the following theorem :
Theorem 8.6 : The diagonals of a parallelogram bisect each other.

Now, what would happen, if in a quadrilateral the diagonals bisect each other? Will it be
aparallelogram? Indeed this is true.

This result is the converse of the result of Theorem 8.6. It is given below:
Theorem 8.7 : If the diagonals of a quadrilateral bisect each other, then it is a parallelogram.

You can reason out this result as follows:
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Note that in Fig. 8.5, it is given that OA =OC and OB =0D. D C
So, AAOB=ACOD (Why?)
Therefore, £ ABO=2CDO (Why?)
From this, we get AB || CD
Similarly, BC ||AD A B
Therefore ABCD is a parallelogram. Fig. 8.5

Let us now take some examples.
Example 1 : Show that each angle of a rectangle is a right angle.
Solution : Let us recall what a rectangle is.

A rectangle is a parallelogram in which one angle is a right angle.

Let ABCD be a rectangle in which £ A=90°. ¢
We have to show that /B=/C=2/D=90°
We have, AD || BC and AB is a transversal (see Fig. 8.6).
So, £ A+ ZB=180°Interior angles on the same A B
side of the transversal) Fig. 8.6
But, ZA=90°
So, ZB=180°-Z A=180°-90°=90°
Now, ZC=/ZAandZD=/B
(Opposite angles of the parallellogram)
So, Z C=90°and £ D=90°.

Therefore, each of the angles of a rectangle is a right angle.
Example 2 : Show that the diagonals of a rhombus are perpendicular to each other.
Solution : Consider the rhombus ABCD (see Fig. 8.7).
You know that AB =BC =CD = DA (Why?)
Now, in A AOD and A COD,

OA = OC (Diagonals of a parallelogram

D C

bisect each other)
OD = 0D (Common) Fig. 8.7
AD=CD
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Therefore, A AOD = A COD
(SSS congruence rule)

This gives, £ AOD= 2 COD (CPCT)
But, £ AOD + £ COD = 180° (Linear pair)
So, 2/ AOD = 180°
or, Z AOD=90°
So, the diagonals of a rhombus are perpendicular to each other.
Example 3 : ABCis an isosceles triangle in which AB = AC. AD bisects exterior angle PAC and
CD ||AB (see Fig. 8.8). Show that
(1) £ DAC=ZBCA and (ii)ABCD is a parallelogram.
Solution : (i) A ABC is isosceles in which AB = AC (Given)
So, LABC= ZACB (Angles opposite to equal sides)

Also, ZPAC= Z ABC+ £ ACB P

(Exterior angle of a triangle) A D
o, ZPAC=2/ACB (1)
Now, AD bisects £ PAC.
So, ZPAC=2/DAC (2) 5 /
Therefore, Fig. 8.8

2/ DAC= 2/ ACB[From (1) and (2)]
or, £ZDAC= ZACB

(i1) Now, these equal angles form a pair of alternate angles when line segments BC and AD are
intersected by a transversal AC.

So, BC|AD

Also, BA|CD (Given)

Now, both pairs of opposite sides of quadrilateral ABCD are parallel.
So, ABCD is a parallelogram.

Example 4 : Two parallel lines / and m are intersected by a transversal p (see Fig. 8.9). Show
that the quadrilateral formed by the bisectors of interior angles is a rectangle.
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Solution : Itis given that PS || QR and transversal p intersects them at points A and C respectively.

The bisectors of £ PAC and £ ACQ intersect at B and bisectors of £ ACR and £ SAC intersect

atD.
P
We are to show that quadrilateral ABCD is a rectangle. N /;

Now, ZPAC=ZACR
(Alternate angles as / || m and p is a transversal)

So, %4PAC= % / ACR

ie., ZBAC=ZACD

These form a pair of alternate angles for lines AB
and DC with AC as transversal and they are equal also.

So, AB| DC
Similarly, BC || AD(Considering £ ACB and £ CAD)

Therefore, quadrilateral ABCD is a parallelogram.

Also, ZPAC+ 2 CAS=180° (Linear pair)
So, 5 ZPAC+> ZCAS= x 180° = 90°

of, ZBAC+ £ CAD=90°

or, ZBAD=90°

So, ABCD is a parallelogram in which one angle is 90°.
Therefore, ABCD is a rectangle.

Example 5 : Show that the bisectors of angles of a parallelogram form a rectangle.

Solution : Let P, Q, R and S be the points of intersection of the
bisectors of £ Aand /B, ZBand £ C, ZCand £ D, and £ D and
Z Arespectively of parallelogram ABCD (see Fig. 8.10).

In A ASD, what do you observe?

Since DS bisects £ D and AS bisects £ A, therefore,
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Also,
or,
or,

So,

/ DAS+ / ADS= % A+ %AD

1
=3 (LA+2£D)
= % x 180°(«£ A and Z D are interior angles

on the same side of the transversal)
= 90°
ZDAS+ ZADS+ ZDSA=180° (Angle sum property of a triangle)
90°+ £ DSA = 180°
ZDSA=90°
Z PSR = 90°(Being vertically opposite to £ DSA)

Similarly, it can be shown that £ APB = 90° or £ SPQ = 90° (as it was shown for
Z DSA). Similarly, £ PQR =90° and £ SRQ =90°.

So, PQRS is a quadrilateral in which all angles are right angles.

Can we conclude that it is a rectangle? Let us examine. We have shown that

ZPSR=/PQR=90° and £ SPQ= 2 SRQ=90°. So both pairs of opposite angles are equal.

Therefore, PQRS is a parallelogram in which one angle (in fact all angles) is 90° and so,

PQRS is arectangle.
EXERCISE 8.1
1. Ifthe diagonals of a parallelogram are equal, then show that it is a rectangle.
2. Show that the diagonals of a square are equal and bisect each other at right angles.
3. Diagonal AC of a parallelogram ABCD bisects D C
Z A(see Fig. 8.11). Show that
(1) it bisects £ C also,
(i1) ABCD is arhombus.
A B
4. ABCD is a rectangle in which diagonal AC bisects £ A as Fig. 8.1

well as £ C. Show that: (i) ABCD is a square (ii) diagonal
BD bisects £ B as well as £ D.
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S.

In parallelogram ABCD, two points P and Q are taken on 2 D
diagonal BD such that DP = BQ (see Fig. 8.12). Show that:

(i) AAPDz=ACQB

(i) AP=CQ

(iii) AAQBz=ACPD B N /

(iv) AQ=CP Fig. 8.12

(v)  APCQisa parallelogram

ABCD is a parallelogram and AP and CQ are perpendiculars
from vertices A and C on diagonal BD (see Fig. 8.13). Show
that

(i) AAPB=ACQD
(i) AP=CQ

ABCD is a trapezium in which AB || CD and A B
AD =BC (see Fig. 8.14). Show that

(1) ZA=/B

(i) Z£C=«D D
(iii) A ABC=ABAD Fig. 8.14

(iv)  diagonal AC =diagonal BD

[Hint: Extend AB and draw a line through C parallel to DA intersecting AB produced at E.]

8.2 The Mid-point Theorem

You have studied many properties of a triangle as well as a quadrilateral. Now let us study yet
another result which is related to the mid-point of sides of a triangle. Perform the following
activity.

Draw a triangle and mark the mid-points E and F of two sides of the triangle. Join the points
E and F (see Fig. 8.15).

Measure EF and BC. Measure £ AEF and £ ABC.
What do you observe? You will find that :

SO,

A

EF=%BCand4AEF=4ABC
EF | BC

Repeat this activity with some more triangles. Fig. 8.15

So,

you arrive at the following theorem:
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Theorem 8.8 : The line segment joining the mid-points of two sides of a triangle is parallel
to the third side.

You can prove this theorem using the following clue:

Observe Fig 8.16 in which E and F are mid-points of AB and A .
AC respectively and CD || BA. _
AAEF= A CDF (ASA Rule) f Dy
So, EF=DF and BE =AE=DC (Why?) \

Therefore, BCDE is a parallelogram.(Why?)
This gives EF || BC.

1 1
In this case, also note that EF = 5 ED= 5 BC.

Can you state the converse of Theorem 8.8? Is the converse true?
You will see that converse of the above theorem is also true which is stated as below:

Theorem 8.9 : The line drawn through the mid-point of one side of a triangle, parallel to
another side bisects the third side.

In Fig 8.17, observe that E is the mid-point of AB, line / is t M
passsing through E and is parallel to BC and CM || BA. FAR

Prove that AF = CF by using the congruence of AAEFand A «...5f L e |
CDF. fN

Fig. 8.17
A
Example 6 : In A ABC, D, E and F are respectively the mid-points
of sides AB, BC and CA (see Fig. 8.18). Show that A ABC is divided .
into four congruent triangles by joining D, E and F.
Solution : As D and E are mid-points of sides AB and BC of the c
triangle ABC, by Theorem 8.8, :
Fig. 8.18
DE| AC

Similarly, DF || BCand EF || AB



i’.)é’;)ﬁg,a:aen 61

?ow(;oéo 8.8 : a8 (B2pz08® BocoH ghere D DotDIOD Eevdedr ACDES By seesss eDed8 Sedroessore
GOCVOE.

&3 %q:o@@& 80 B LSS wogo° AETR0BHEY).

600 8.16 % Kool 585 AB, AC ghere i Hothiden SEHRP )
E %605 Feo 800 CD || BA. VAN 7
AAEF= A CDF (&.65.5%. 2050) JARA\ S
%%, EF = DF 08050 BE =AE = DC (20%?) . L

a8, BCDE .8 $&r088 $5édyessin (Doh?)
&2 %o& EF || BC e0rvio.

Seo. 8.16

1 1
& éoéé@o %08 EF = ) ED = EBC o Ko LHD).

%q:oéo 8. 8% DHBZADo TyeTe? &8 DHBIOD0 H&ga3re?
& %q:oé DDHBgodo Erre 6653) AR (Bod Degorre ABLEroLIR).

?ow;oéo 8.9 : a8 Hgbaod® a8 ghaso D¢ Doy Dol HEE gHerd Hadrossaivrre Acba&S B,
i3S gHereR)) BLEPOLES 3@0@.
H00 8.17 SotH AABC & AB o doto E 60w BC & y f‘-"
BErosBore [ o3 B E thowe deod. CM || BA ;I\ :
A AEF 8050 A CDF o6 563558 9000 (68.8.8%.) [$5°50 £ N
AF = CF 9 d87%0%508. " Fy .

»

C

Sévo. 8.17
A
awsden 6 : AABC & D, E, F en S8 AB, BC 5080w CA gheee
055 Dothden, (Heo 8.18 wrkod) HBA® f, D, E, F othdHeds D F
023 A ABC 9 mrentd $8R08mS (Bgheenrr DR00808
QER0B08.

B C
E

F65: AABC & D, E en 555 AB, BC ghee o6 Dothde, IS
Evlalglelavky) ‘z”ow@t’oéo 8.9 (Bsedo,

DE || AC
=3 9ore,  DF | BC %050 EF || AB e0%%06.

Seo. 8.18



62 QUADRILATERALS

Therefore ADEF, BDFE and DFCE are all parallelograms.
Now DE is a diagonal of the parallelogram BDFE,
therefore, ABDE= AFED

Similarly ADAF = AFED

and AEFC= AFED

So, all the four triangles are congruent.

Example 7 : [, m and n are three parallel lines intersected

by transversals p and ¢ such that /, m and n cut off equal roA
intercepts AB and BC on p (see Fig. 8.19). Show that /, m A/ /\ D,
and 7 cut off equal intercepts DE and EF on ¢ also. . A /

E

Solution : We are given that AB = BC and have to prove </ G\/ -
that DE = EF. PR E sn

Let us join A to F intersecting m at G..

The trapezium ACFD is divided into two triangles; namely Fig.8.19
A ACF and A AFD.

In A ACEF, itis given that B is the mid-point of AC (AB = BC)
and BG ||CF (sincem || n).
So, G is the mid-point of AF  (by using Theorem 8.9)

Now, in A AFD, we can apply the same argument as G is the mid-point of AF,
GE || AD and so by Theorem 8.9, E is the mid-point of DF,

ie., DE=EF.

In other words, /, m and n cut off equal intercepts on g also.

EXERCISE 8.2

1. ABCD is a quadrilateral in which P, Q, R and S are mid-
points of the sides AB, BC, CD and DA
(see Fig 8.20). AC is a diagonal. Show that :

()  SR|ACandSR=- AC
(ii)) PQ=SR
(iii) PQRSis a parallelogram.
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. ABCD is arhombus and P, Q, R and S are the mid-points of the sides AB, BC, CD and DA

respectively. Show that the quadrilateral PQRS is a rectangle.

. ABCD isarectangle and P, Q, R and S are mid-points of the sides AB, BC, CD and DA

respectively. Show that the quadrilateral PQRS is a rhombus.

. ABCDis atrapezium in which AB || DC, BD is a diagonal and E is the mid-point of AD.

Aline is drawn through E parallel to AB intersecting BC at F (see Fig. 8.21). Show that
F is the mid-point of BC.

E/ “
A B
Fig. 8.21
. In a parallelogram ABCD, E and F are the mid-points of b F C
sides AB and CD respectively (see Fig. 8.22). Show that
the line segments AF and EC trisect the diagonal BD. P
A E B
Fig. 8.22

. ABC s atriangle right angled at C. A line through the mid-point M of hypotenuse AB and

parallel to BC intersects AC at D. Show that
(1) Dis the mid-point of AC

(i) MD_LAC

(i) CM=MA=_AB
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8.3 Summary

In this chapter, you have studied the following points :

1. A diagonal of a parallelogram divides it into two congruent triangles.

2. Inaparallelogram,

(1) opposite sides are equal (i1) opposite angles are equal

(iii) diagonals bisect each other

Diagonals of a rectangle bisect each other and are equal and vice-versa.
Diagonals of a rhombus bisect each other at right angles and vice-versa.

Diagonals of a square bisect each other at right angles and are equal, and vice-versa.

SR

The line-segment joining the mid-points of any two sides of a triangle is parallel to the third
side and is half of it.

7. A line through the mid-point of a side of a triangle parallel to another side bisects the third
side.
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0962CH10

CHAPTER 9

CIRCLES
I

9.1 Angle Subtended by a Chord at a Point

You have already studied about circles and its parts in Class VI.

Take a line segment PQ and a point R not on the line containing PQ. Join PR and QR (see Fig.
9.1). Then £ PRQ s called the angle subtended by the line segment PQ at the point R. What are
angles POQ, PRQ and PSQ called in Fig. 9.2? £ POQ is the angle subtended by the chord PQ at
the centre O, £ PRQ and £ PSQ are respectively the angles subtended by PQ at points R and S
on the major and minor arcs PQ.

R
R

P / Q
P Q \0
S
Fig. 9.1 Fig. 9.2

Let us examine the relationship between the size of the chord and the angle subtended
by it at the centre. You may see by drawing different chords of a circle and angles subtended
by them at the centre that the longer is the chord, the bigger will be the angle subtended by
it at the centre. What will happen if you take two equal chords of a circle? Will the angles
subtended at the centre be the same or not?
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Draw two or more equal chords of a circle and measure
the angles subtended by them at the centre (see Fig.9.3).
You will find that the angles subtended by them at the centre
are equal. Let us give a proof of this fact.

Theorem 9.1 : Equal chords of a circle subtend equal

angles at the centre.

Proof : You are given two equal chords AB and CD of a
circle with centre O (see Fig.9.4). You want to prove that
ZAOB=ZCOD.

In triangles AOB and COD,
OA= OC (Radii of a circle)
OB= OD (Radii of a circle)

AB= CD (Given)

Fig. 9.4

Therefore, AAOB=ACOD (SSS rule)

This gives ZAOB=2COD
(Corresponding parts of congruent triangles)

Remark : For convenience, the abbreviation CPCT will be used in place of ‘Corresponding

parts of congruent triangles’, because we use this very frequently as you will see.

Now if two chords of a circle subtend equal angles at the centre, what can you say about the

chords? Are they equal or not? Let us examine this by the following activity:

Take a tracing paper and trace a circle on it. Cut it along ,/ AN
the circle to get a disc. At its centre O, draw an angle AOB Af 0 \lQ
where A, B are points on the circle. Make another angle POQ \\\ /
at the centre equal to ZAOB. Cut the disc along AB and PQ s ¥ 'R
(see Fig. 9.5). You will get two segments ACB and PRQ of A< —B P<— —Q
the circle. If you put one on the other, what do you observe? C R
Fig. 9.5

They cover each other, i.e., they are congruent. So AB = PQ.
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Though you have seen it for this particular case, try it out for other equal angles too. The
chords will all turn out to be equal because of the following theorem:

Theorem 9.2 : If the angles subtended by the chords of a circle at the centre are equal, then
the chords are equal.

The above theorem is the converse of the Theorem 9.1. Note that in Fig. 9.4, if you take
Z AOB = 2 COD, then

AAOB = A COD (Why?)
Can you now see that AB =CD?

EXERCISE 9.1
1. Recall that two circles are congruent if they have the same radii. Prove that equal chords
of congruent circles subtend equal angles at their centres.

2. Prove that if chords of congruent circles subtend equal angles at their centres, then the
chords are equal.

1
9.2 Perpendicular from the Centre to a Chord

Activity : Draw a circle on a tracing paper. Let O be its centre.

a portion of the chord falls on the other. Let the crease cut AB at
the point M. Then, £ OMA = Z OMB =90° or OM is perpendicular A \\y B
to AB. Does the point B coincide with A (see Fig.9.6)? :

Yes it will. So MA= MB. Fig. 9.6

Give a proof yourself by joining OA and OB and proving the right triangles OMA and OMB
to be congruent. This example is a particular instance of the following result:

|
1
1
1
Draw a chord AB. Fold the paper along a line through O so that :O
:
1
1
1

Theorem 9.3 : The perpendicular from the centre of a circle to a chord bisects the chord.

What is the converse of this theorem? To write this, first let us be clear what is assumed in
Theorem 9.3 and what is proved. Given that the perpendicular from the centre of a circle to a
chord is drawn and to prove that it bisects the chord. Thus in the converse, what the hypothesis
is ‘if a line from the centre bisects a chord of a circle’ and what is to be proved is ‘the line
is perpendicular to the chord’. So the converse is:
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Theorem 9.4 : The line drawn through the centre of a circle to bisect a chord is perpendicular

to the chord.

Is this true? Try it for few cases and see. You will see that it is true
for these cases. See if it is true, in general, by doing the following
exercise. We will write the stages and you give the reasons.

Let AB be a chord of a circle with centre O and O is joined to
the mid-point M of AB. You have to prove that OM L AB. Join OA
and OB (see Fig. 9.7). In triangles OAM and OBM,

OA=0B (Why ?)
AM = BM (Why ?)
OM=0OM (Common)
Therefore, AOAM = AOBM (How ?)

This givesZ/OMA=/0MB =90° (Why ?)

9.3 Equal Chords and Their Distances from the Centre

Let AB be a line and P be a point. Since there are infinite numbers
of points on a line, if you join these points to P, you will get
infinitely many line segments PL , PL,, PM, PL, PL , etc. Which
of these is the distance of AB from P? You may think a while and
get the answer. Out of these line segments, the perpendicular from
P to AB, namely PM in Fig. 9.8, will be the least. In Mathematics,
we define this least length PM to be the distance of AB from P.
So you may say that:

H

ALL M L, L, LB
Fig. 9.8

The length of the perpendicular from a point to a line is the distance of the line from the

point.

Note that if the point lies on the line, the distance of the line from the point is zero.

A circle can have infinitely many chords. You may observe by drawing chords of a

circle that longer chord is nearer to the centre than the smaller chord. You may observe

it by drawing several chords of a circle of different lengths and measuring their

distances from the centre. What is the distance of the diameter, which is the
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longest chord from the centre? Since the centre lies on it, the distance is zero. Do you think
that there is some relationship between the length of chords and their distances from the centre?
Let us see if this is so.

Fig. 9.9

Activity : Draw a circle of any radius on a tracing paper. Draw two equal chords AB and CD
ofit and also the perpendiculars OM and ON on them from the centre O. Fold the figure so
that D falls on B and C falls on A [see Fig.9.9 (i)]. You may observe that O lies on the crease
and N falls on M. Therefore, OM = ON. Repeat the activity by drawing congruent circles
with centres O and O’ and taking equal chords AB and CD one on each. Draw perpendiculars
OM and O'N on them [see Fig. 9.9(ii)]. Cut one circular disc and put it on the other so that
AB coincides with CD. Then you will find that O coincides with O" and M coincides with N.
In this way you verified the following:

Theorem 9.5 : Equal chords of a circle (or of congruent circles) are equidistant from the

centre (or centres).

Next, it will be seen whether the converse of this theorem is true or not. For this, draw
a circle with centre O. From the centre O, draw two line segments OL and OM of equal
length and lying inside the circle [see Fig. 9.10(i)]. Then draw chords PQ and RS of the
circle perpendicular to OL and OM respectively [see Fig 9.10(ii)]. Measure the lengths of
PQ and RS. Are these different? No, both are equal. Repeat the activity for more equal line
segments and drawing the chords perpendicular to them. This verifies the converse of the
Theorem 9.5 which is stated as follows:



Syzeen 77

©ONY VO AE) K80 DoE? So(%o P Gotnod B8, Brdo 0T, &5 EPEHE B Sol&o
208 &8 Ko BrTredd &y AR D0D0LOo GO S gPARQTNT°? B8 Jesde 568, Sodo iﬁrqgo.

(i)

$e0. 9.9

Ed50 : 28 PBEYE SPAS0 o DJT° g0 BONS 9zl AcHod. e AB 805w CD o3 3otk
DS LD Ko ergodn Adhod $8ckw SolEo O %0 @ ergeH OM $8an ON ol eowrets
Acbod. B &ois D $:8a5 A &ot5 C $EDS0rm emg) $508 [$00 9.9(1) 8 drt0s]. O HEsem
NGAS A8 O 2080w N, M &okerd) Db $5000858). @by, OM = ON. O Hocskn O
Solred® $EREPS HzpedH Adhto Txoe HBA w850 a8 K5 &y AB $bckn CDok
&08%5t0 TTe Eel) HITEBo Bahold. & OM oo ON oF vowres Adbod [Heo
9.9(ii)d 08 ]. &8 HErses &7 J 8Bosos 6 AB &t CD & H8500der mrdd $HEER
@008, o O o6 O & H&gakond Hoam M o6 N&& D&gdkond b S,
& Qorr B BIHD HEVTER JOBFYL:

?oq;oéo 95: ag)go Glnig BE5Ie°S Ag)eg_?w) AE) BEGIIS a%gen Bo(So (S Sofmren) 0B B3
B80S soéran.

BoREEs ?ot%oééo cﬁwé& 8)5)6505)0 ééegzﬁav, 5o R0 Srdeathdod. 8 5%, O _550@5058 a8 é@@@&
AcHo8. O Solo 08, $5msd P& 80AS OL 8050 OM o Bok Sgrpomredy Aohod bk
o & wosod [H60 9.10(1) Kol ]. Ehaed 58 eger PQ 8ako RS ek $85m OL fdako
OM o% eomorr Achod [Heo 9.10(11)R SrEod]. PQ S08asn RS Gwg) Sredeos 880508, v
33§6m° &INA? B0, Bodr BSrssDh. $ErS Bgrgporren SHEY B8 eoore azogen AD é@)@é@&
Kg)?é@é@)éo ZoHok. b & (Bod dForre '&6"272620&26 ?omsoééaéw 9.5 EwE) JHBZATY Cﬁaﬁ)é@@o&:



78 CIRCLES

Qv S
() (ii)
Fig. 9.10

Theorem 9.6 : Chords equidistant from the centre of a circle are equal in length.
We now take an example to illustrate the use of the above results:

Example 1 : If two intersecting chords of a circle make equal angles with the diameter passing
through their point of intersection, prove that the chords are equal.

Solution : Given that AB and CD are two chords of a circle, with
centre O intersecting at a point E. PQ is a diameter through E,
such that ZAEQ=2ZDEQ (see Fig.9.11). You have to prove that
AB=CD. Draw perpendiculars OL and OM on chords AB and CD,
respectively. Now
ZLOE=180°-90°—- ZLEO =90° - Z LEO
(Angle sum property of a triangle)
=90°- Z AEQ=90°—- £ DEQ
= 90° - L MEO = £ MOE

Fig. 9.11

In triangles OLE and OME,
ZLEO= ZMEO (Why ?)
Z LOE= ZMOE (Proved above)
EO=EO (Common)
Therefore, AOLE= AOME (Why ?)
This gives OL= OM (CPCT)

So, AB=CD (Why ?)
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EXERCISE 9.2

1. Two circles of radii 5 cm and 3 cm intersect at two points and the distance between their
centres is 4 cm. Find the length of the common chord.

2. Iftwo equal chords of a circle intersect within the circle, prove that the segments of one
chord are equal to corresponding segments of the other chord.

3. Iftwo equal chords of a circle intersect within the circle, prove that the line joining
the point of intersection to the centre makes equal angles with the chords.

4. If aline intersects two concentric circles (circles with the
same centre) with centre O at A, B, C and D, prove that
AB=CD (see Fig.9.12).

5. Three girls Reshma, Salma and Mandip are playing a game

by standing on a circle of radius Sm drawn in a park. 4
Reshma throws a ball to Salma, Salma to Mandip, Mandip
to Reshma. If the distance between Reshma and Salma

and between Salma and Mandip is 6m each, what is the Fig. 9.12
distance between Reshma and Mandip?

D

A

6. A circular park of radius 20m is situated in a colony. Three boys Ankur, Syed and
David are sitting at equal distance on its boundary each having a toy telephone in his
hands to talk each other. Find the length of the string of each phone.

9.4 Angle Subtended by an Arc of a Circle

You have seen that the end points of a chord other than diameter of a circle cuts it into two arcs
— one major and other minor. If you take two equal chords, what can you say about the size of
arcs? Is one arc made by first chord equal to the corresponding arc made by another chord? In
fact, they are more than just equal in length. They are congruent in the sense that if one arc is put
on the other, without bending or twisting, one superimposes the other completely.

You can verify this fact by cutting the arc, corresponding to the S
chord CD from the circle along CD and put it on the corresponding
arc made by equal chord AB. You will find that the arc CD A .
superimpose the arc AB completely (see Fig. 9.13). This shows
that equal chords make congruent arcs and conversely congruent 5
arcs make equal chords of a circle. You can state it as follows: Fig. 9.13

Iftwo chords of a circle are equal, then their corresponding arcs are congruent and conversely,
if two arcs are congruent, then their corresponding chords are equal.
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Also the angle subtended by an arc at the centre is defined to

be angle subtended by the corresponding chord at the centre in the

sense that the minor arc subtends the angle and the major arc

subtends the reflex angle. Therefore, in Fig 9.14, the angle

subtended by the minor arc PQ at O is ZPOQ and the angle

subtended by the major arc PQ at O is reflex angle POQ. P 0
In view of the property above and Theorem 9.1, the following

result is true: Fig. 9.14

Congruent arcs (or equal arcs) of a circle subtend equal angles at the centre.

Therefore, the angle subtended by a chord of a circle at its centre is equal to the angle
subtended by the corresponding (minor) arc at the centre. The following theorem gives the
relationship between the angles subtended by an arc at the centre and at a point on the circle.

Theorem 9.7 : The angle subtended by an arc at the centre is double the angle subtended by
it at any point on the remaining part of the circle.

Proof : Given an arc PQ of a circle subtending angles POQ at the centre O and PAQ at a
point A on the remaining part of the circle. We need to prove that
ZPOQ =2 £PAQ.

RS

(i) (iii)
Fig. 9.15

Consider the three different cases as given in Fig. 9.15. In (i), arc PQ is minor; in (ii), arc PQ is
a semicircle and in (iii), arc PQ is major.

Let us begin by joining AO and extending it to a point B.

In all the cases,
ZB0OQ= Z0AQ+ ~ZAQO

because an exterior angle of a triangle is equal to the sum of the two interior opposite angles.
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Also in A OAQ,

OA=0Q (Radii of a circle)
Therefore, Z0AQ= Z00QA (Theorem 7.5)
This gives ZBOQ=22Z0AQ (D)
Similarly, ZBOP =2 Z0OAP (2)
From (1) and (2), £ BOP+ Z BOQ =2(£ OAP + £ OAQ)
This is the same as ZPOQ =2 ZPAQ 3)

For the case (iii), where PQ is the major arc, (3) is replaced by
reflex angle POQ = 2 Z PAQ

Remark : Suppose we join points P and Q and form a chord
PQ in the above figures. Then £ PAQ is also called the angle
formed in the segment PAQP.

In Theorem 9.7, A can be any point on the remaining part of
the circle. So if you take any other point C on the remaining

part of the circle (see Fig. 9.16), you have

ZPOQ=2/£PCQ=2~ZPAQ
Therefore, Z PCQ= ZPAQ.

This proves the following:

Theorem 9.8 : Angles in the same segment of a circle are equal.

Again let us discuss the case (ii) of Theorem 10.8 separately. Here Z/PAQ is an angle in the
segment, which is a semicircle. Also, £ PAQ = % ZPOQ= % x 180° = 90°. If you take any
other point C on the semicircle, again you get that

ZPCQ=90°
Therefore, you find another property of the circle as:

Angle in a semicircle is a right angle.

The converse of Theorem 9.8 is also true. It can be stated as:

Theorem 9.9 : If a line segment joining two points subtends equal angles at two other
points lying on the same side of the line containing the line segment, the four points lie on
a circle (i.e. they are concyclic).
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You can see the truth of this result as follows:
In Fig. 9.17, AB is a line segment, which subtends equal angles at two points C and D. That is
ZACB= ZADB

To show that the points A, B, C and D lie on a circle let us draw a
circle through the points A, C and B. Suppose it does not pass
through the point D. Then it will intersect AD (or extended AD) at
apoint, say E (or E").

If points A, C, E and B lie on a circle,
ZACB= ZAEB (Why?)
Butit s given thatZ ACB = Z ADB.
Therefore, Z AEB= Z ADB.
This is not possible unless E coincides with D. (Why?)

Similarly, E’ should also coincide with D.

9.5 Cyclic Quadrilaterals A

A quadrilateral ABCD is called cyclic if all the four vertices of it lie on
a circle (see Fig 9.18). You will find a peculiar property in such

quadrilaterals. Draw several cyclic quadrilaterals of different sides and C
name each of these as ABCD. (This can be done by drawing several \\/

circles of different radii and taking four points on each of them.)

Measure the opposite angles and write your observations in the Fig.5.18
following table.
S.No. of Quadrilateral LA ZB | LC | £D LA+ZC ZB+4D
1.
2.
3.
4.
5.
6.

What do you infer from the table?
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You find that ZA+ ZC=180° and ZB + ZD = 180°, neglecting the error in measurements.
This verifies the following:

Theorem 9.10 : The sum of either pair of opposite angles of a cyclic quadrilateral is 180°.

In fact, the converse of this theorem, which is stated below is also true.

Theorem 9.11 : If the sum of a pair of opposite angles of a quadrilateral is 180°, the
quadrilateral is cyclic.

You can see the truth of this theorem by following a method similar to the method adopted
for Theorem 9.9.

Example 2 : In Fig. 9.19, AB is a diameter of the circle, CD is a chord equal to the radius of the
circle. AC and BD when extended intersect at a point E. Prove that £ AEB = 60°.

Solution : Join OC, OD and BC.

Triangle ODC is equilateral (Why?)
Therefore, £ COD = 60°

Now, Z CBD = % Z COD (Theorem 9.7)

This gives £ CBD = 30°

Again, Z ACB=90° (Why ?)

So, ZBCE= 180° - Z ACB =90°

Which givesZ CEB =90° — 30° = 60°, i.e., £ AEB = 60°

Fig.9.19

Example 3 : In Fig9.20, ABCD is a cyclic quadrilateral in which
AC and BD are its diagonals. If £ DBC=55° and £ BAC =45°,
find £ BCD.

Solution : Z CAD = Z DBC = 55° 2
(Angles in the same segment)

Therefore, ~DAB= /CAD+ /BAC A
= 55° +45°=100°
ButZ DAB + 2 BCD =180° B C
(Opposite angles of a cyclic quadrilateral) Fig. 9.20
So, 2/ BCD = 180° — 100° = 80°
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Example 4 : Two circles intersect at two points A and B. AD and A
AC are diameters to the two circles (see Fig. 9.21). Prove that B ' 0

lies on the line segment DC.

D A C
Solution : Join AB.

2 ABD = 90°(Angle in a semicircle) Fig.9.21
2 ABC = 90°(Angle in a semicircle)

So,Z ABD + £ ABC= 90° + 90° = 180°

Therefore, DBC is a line. That is B lies on the line segment DC.

Example 5 : Prove that the quadrilateral formed (if possible) by the internal angle bisectors of
any quadrilateral is cyclic. A D

Solution : In Fig. 9.22, ABCD is a quadrilateral in which the angle

F
bisectors AH, BF, CF and DH of internal angles A, B, C and D
respectively form a quadrilateral EFGH.
C
Now, Z/ FEH=/Z AEB=180°—- Z EAB— ZEBA (Why?) B i 0,22
ig. 9.

~180°— 5 (LA+ZB)
and /FGH=/ CGD =180°— / GCD—/ GDC (Why ?)
~180°~ 5 (£C+£D)
Therefore, / FEH + Z FGH = 180°—% (LA+2«£B)+180°— % (£ C+4£D)

~360°— % (4A+4B+4C+4D)=360°—% x 360°
—~360° — 180° = 180°

Therefore, by Theorem 9.11, the quadrilateral EFGH is cyclic. C
A
EXERCISE 9.3 q

1. In Fig. 9.23, A,B and C are three points on a circle with
centre O such that Z BOC=30°and £ AOB=60°.IfD s
a point on the circle other than the arc ABC, find ZADC. D
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. InFig.9.24, ZPQR =100°, where P, Q and R are points on

. InFig. 9.25, Z ABC=69°, L ACB=31°, find £ BDC.

. A chord of a circle is equal to the radius of the circle. Find

Q
the angle subtended by the chord at a point on the minor arc /‘
and also at a point on the major arc. P
\ R

a circle with centre O. Find £ OPR.

Fig. 9.24

69° 3
BUC

Fig. 9.25

. In Fig. 9.26, A, B, C and D are four points on a circle. D

A
AC and BD intersect at a point E such that £/ BEC = 130° %
and £ ECD =20°. Find £ BAC. s 30” N

Fig. 9.26

C

. ABCD is acyclic quadrilateral whose diagonals intersect at a point E. If £ DBC = 70°,

Z BAC is 30°, find £ BCD. Further, if AB =BC, find £ ECD.

. If diagonals of a cyclic quadrilateral are diameters of the circle through the vertices of

the quadrilateral, prove that it is a rectangle.

. Ifthe non-parallel sides of a trapezium are equal, prove that it is cyclic.
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9. Two circles intersect at two points B and C. Through B, L .
two line segments ABD and PBQ are drawn to intersect
the circles at A, D and P, Q respectively (see Fig. 9.27). #
Prove that £ ACP =~/ QCD. Q
C
Fig. 9.27

10.If circles are drawn taking two sides of a triangle as diameters, prove that the point of
intersection of these circles lie on the third side.

11. ABC and ADC are two right triangles with common hypotenuse AC. Prove that
ZCAD=ZCBD.

12.Prove that a cyclic parallelogram is a rectangle.

9.6 Summary

In this chapter, you have studied the following points:

1.

10.

11.

A circle is the collection of all points in a plane, which are equidistant from a fixed point in
the plane.

Equal chords of a circle (or of congruent circles) subtend equal angles at the centre.

If the angles subtended by two chords of a circle (or of congruent circles) at the centre
(corresponding centres) are equal, the chords are equal.

The perpendicular from the centre of a circle to a chord bisects the chord.

The line drawn through the centre of a circle to bisect a chord is perpendicular to
the chord.

Equal chords of a circle (or of congruent circles) are equidistant from the centre (or
corresponding centres).

Chords equidistant from the centre (or corresponding centres) of a circle (or of congruent
circles) are equal.

Iftwo arcs of a circle are congruent, then their corresponding chords are equal and conversely
if two chords of a circle are equal, then their corresponding arcs (minor, major) are
congruent.

Congruent arcs of a circle subtend equal angles at the centre.

The angle subtended by an arc at the centre is double the angle subtended by it at any point
on the remaining part of the circle.

Angles in the same segment of a circle are equal.
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12. Angle in a semicircle is a right angle.

13. If a line segment joining two points subtends equal angles at two other points lying on the
same side of the line containing the line segment, the four points lie on a circle.

14. The sum of either pair of opposite angles of a cyclic quadrilateral is 180°.

15. If sum of a pair of opposite angles of a quadrilateral is 180°, the quadrilateral is cyclic.
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98 HERON’S FORMULA

0962CH12

Cuarter 10

HERON’S FORMULA
I

10.1 Area of a Triangle — by Heron’s Formula

We know that the area of triangle when its height is given, is % x base x height. Now suppose
that we know the lengths of the sides of a scalene triangle and not the height. Can you still find
its area? For instance, you have a triangular park whose sides are 40 m, 32 m, and 24 m. How
will you calculate its area? Definitely if you want to apply the formula, you will have to calculate
its height. But we do not have a clue to calculate the height. Try doing so. If you are not able to
get it, then go to the next section.

Heron was born in about 10AD possibly in Alexandria in Egypt.
He worked in applied mathematics. His works on mathematical
and physical subjects are so numerous and varied that he is
considered to be an encyclopedic writer in these fields. His
geometrical works deal largely with problems on mensuration
written in three books. Book I deals with the area of squares,

rectangles, triangles, trapezoids (trapezia), various other
specialised quadrilaterals, the regular polygons, circles, surfaces Heron (10 C.E.-75C.E.)
of cylinders, cones, spheres etc. In this book, Heron has derived Fig. 10.1

the famous formula for the area of a triangle in terms of its three

sides.

The formula given by Heron about the area of a triangle, is also known as Hero § formula. It
is stated as:

Area of a triangle = \/s(s—a) (s — b) (s — ¢) 1)
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where a, b and c are the sides of the triangle, and s = semi-perimeter, i.e., half the perimeter

a+b+c
2

b

of the triangle =

This formula is helpful where it is not possible to find the height of the triangle easily. Let
us apply it to calculate the area of the triangular park ABC, mentioned above (see Fig. 10.2).

Letustakea=40m, b=24m,c=32m,

40 + 24 + 32

so that we have s = — m=48 m. A
32m 24 m
s—a=(48—-40)m=8 m,
s—b=(48—-24) m=24m, B C
40 m
s—c=(48-32)m=16 m. Fig. 10.2

Therefore, area of the park ABC

= sGs—a)(s=b)(s—c)
= J48x 8 x 24 x 16 m* = 384m’

We see that 322+ 242 = 1024 + 576 = 1600 = 40°. Therefore, the sides of the park make a
right triangle. The largest side, i.e., BC which is 40 m will be the hypotenuse and the angle
between the sides AB and AC will be 90°.

We can check that the area of the park is % x 32 x 24 m* =384 m%.

We find that the area we have got is the same as we found by using Heron’s formula.

Now using Heron’s formula, you verify this fact by finding the areas of other triangles
discussed earlier viz.,

(1) equilateral triangle with side 10 cm.
(i1)isosceles triangle with unequal side as 8 cm and each equal side as 5 cm.

You will see that

. 10+10+10
For (i), we have s = —,  m= 15 cm.
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Area of triangle = /1515 - 10) (15 - 10) (15 — 10) cm?

=J15x5x5x%5 cm2=25\/§cm2

8+5+5

For (ii), we have s = cm =9 cm

Area of triangle = \/9(9 - 8) (9 - 5) (9 - 5) cm?= 9 x I x 4 x 4cm?=12 cm’.
Let us now solve some more examples:

Example 1 : Find the area of a triangle, two sides of which are 8 cm and 11 cm and the perimeter
is 32 cm (see Fig. 10.3).

Solution : Here we have perimeter of the triangle =32 cm, a =8 cmand » = 11 cm.

Third sidec=32cm—(8+11)cm=13 cm

C
So, 2s=32,ie.,5=16cm,
11 cm 8 cm
s—a=(16—-8)cm=28 cm,
A B
s—b=(16—-11)cm =5 cm, Fig. 10.3
s—c=(16—-13)cm=3 cm.
Therefore, area of the triangle = Js(s —a) (s = b) (s —¢)

= J16x 8 x 5x3cm® =830 cm®

Example 2 : A triangular park ABC has sides 120m, 80m and 50m (see Fig. 10.4). A gardener
Dhania has to put a fence all around it and also plant grass inside. How much area does she need
to plant? Find the cost of fencing it with barbed wire at the rate of 20 per metre leaving a space
3m wide for a gate on one side.

Solution : For finding area of the park, we have

2s=50m+ &80 m+ 120 m =250 m.

A
i.e., s=125m 50 m 80 m
Now, s—a=(125-1200m=35m, 2 3 ] IC
s—b=(125-80)m=45m, < 120 m >

s—c=(125-50) m =75 m. Fig. 10.4
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Therefore, area of the park = Js(s —a) (s = b) (s — ¢)

= J125 x5 x 45 x 75 m*

= 37515 m’
Also, perimeter of the park = AB + BC + CA=250 m
Therefore, length of the wire needed for fencing =250 m — 3 m (to be left for gate)
=247 m
And so the cost of fencing =320 x 247 =34940

Example 3 : The sides of a triangular plot are in the ratio of 3 : 5 : 7 and its perimeter is 300 m.
Find its area.

Solution : Suppose that the sides, in metres, are 3x, 5x and 7x (see Fig. 10.5).
Then, we know that 3x + 5x + 7x = 300 (perimeter of the triangle)
Therefore, 15x =300, which gives x = 20.

So the sides of the triangle are 3 x 20m, 5 x 20 m and 7 x 20 m

i.e., 60m, 100 mand 140 m. 3x 5x
Can you now find the area [Using Heron’s formula]? x

Fig. 10.5
We have s = w m= 150 m,

and area will be ,/150(150- 60) (150 — 100) (150 —140) m?

= /150 x 90 x50 x 10 m?

= 1500+/3m>
EXERCISE 10.1

1. Atraffic signal board, indicating ‘SCHOOL AHEAD?”, is an equilateral triangle with side
‘a’. Find the area of the signal board, using Heron’s formula. If its perimeter is
180 cm, what will be the area of the signal board?
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. The triangular side walls of a flyover have been used for advertisements. The sides of the

walls are 122 m, 22 mand 120 m (see Fig. 10.6). The advertisements yield an earning of
% 5000 per m? per year. A company hired one of its walls for 3 months. How much rent
did it pay?

Fig. 10.6

3. There is a slide in a park. One of its side walls has been painted in some colour with a

message “KEEP THE PARK GREEN AND CLEAN” (see Fig. 10.7). If the sides of the
wall are 15 m, 11 m and 6 m, find the area painted in colour.

KEEP THE PARK
GREEN AND CLEAN

I5m
Fig. 10.7

. Find the area of a triangle two sides of which are 18cm and 10cm and the perimeter is

42cm.

. Sides of a triangle are in the ratio of 12 : 17 : 25 and its perimeter is 540cm. Find its

arca.

. Anisosceles triangle has perimeter 30 cm and each of the equal sides is 12 cm. Find the

area of the triangle.
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10.2 Summary
In this chapter, you have studied the following points :

1. Area of a triangle with its sides as a, b and c is calculated by using Heron’s formula,

stated as

Area of triangle = \/s(s — a) (s = b) (s — ¢)

a+b+c
where s = 5
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CHAPTER lll

SURFACE AREAS AND VOLUMES
I

11.1 Surface Area of a Right Circular Cone

We have already studied the surface areas of cube, cuboid and cylinder. We will now study the
surface area of cone.

So far, we have been generating solids by stacking up congruent figures. Incidentally, such figures
are called prisms. Now let us look at another kind of solid which is not a prism (These kinds of
solids are called pyramids.). Let us see how we can generate them.

Activity : Cut out a right-angled triangle ABC right angled at B. Paste a long thick string along
one of the perpendicular sides say AB of the triangle [see Fig. 11.1(a)]. Hold the string with
your hands on either sides of the triangle and rotate the triangle about the string a number of
times. What happens? Do you recognize the shape that the triangle is forming as it rotates
around the string [see Fig. 11.1(b)]? Does it remind you of the time you had eaten an ice-cream
heaped into a container of that shape [see Fig. 11.1 (¢) and (d)]?

B
C—B c—B- ¢ C-%t C

A A L

A4

(a) (b) (c) (d)

Fig. 11.1
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This is called a right circular cone. In Fig. 11.1(c) of the
right circular cone, the point A is called the vertex, AB is
called the height, BC is called the radius and AC is called
the slant height of the cone. Here B will be the centre of
circular base of the cone. The height, radius and slant height
of the cone are usually denoted by 4, r and / respectively.

Once again, let us see what kind of cone we can nof call a

(a) (b)

right circular cone. Here, you are (see Fig. 11.2)! What you
see in these figures are not right circular cones; because in Fig. 11.2
(a), the line joining its vertex to the centre of its base is not

at right angle to the base, and in (b) the base is not circular.

As in the case of cylinder, since we will be studying only about right circular cones, remember
that by ‘cone’ in this chapter, we shall mean a ‘right circular cone.’

Activity : (i) Cut out a neatly made paper cone that does not have any overlapped paper, straight
along its side, and opening it out, to see the shape of paper that forms the surface of the cone.
(The line along which you cut the cone is the slant height of the cone which is represented by
[). It looks like a part of a round cake.

(i1) If younow bring the sides marked A and B at the tips together, you can see that the curved
portion of Fig. 11.3 (c) will form the circular base of the cone.

(b)

Fig. 11.3

(ii1) If the paper like the one in Fig. 11.3 (c) is now cut into hundreds of little pieces, along the
lines drawn from the point O, each cut portion is almost a small triangle, whose height is
the slant height / of the cone.

(iv) Now the area of each triangle = % x base of each triangle x /.

So, area of the entire piece of paper
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= sum of the areas of all the triangles

1,1 1 1
Shl+Sbl+ Dbl + = Sl (b by b+

1 . .
3 X [ % length of entire curved boundary of Fig. 11.3(c)

(as b, + b, + b, +...makes up the curved portion of the figure)

But the curved portion of the figure makes up the perimeter of the base of the cone and the
circumference of the base of the cone = 2ntr, where r is the base radius of the cone.

So, |Curved Surface Area of a Cone = % x [ X 2mr=nrl S ——

where 7 is its base radius and / its slant height.

Note that 2= >+ 1 (as can be seen from Fig. 11.4), by applying Pythagoras
Theorem. Here /4 is the height of the cone.

Therefore, [ = /> + K>

Now if the base of the cone is to be closed, then a circular piece of paper of radius r is also
required whose area is 172,

Fig. 11.4

So, | Total Surface Area of a Cone = ntrl + 7r* = mr(l + r)

Example 1 : Find the curved surface area of a right circular cone whose slant height is 10 cm
and base radius is 7 cm.

Solution : Curved surface area = mr/

% x 7 %10 cm?

=220 cm?

Example 2 : The height of a cone is 16 cm and its base radius is 12 cm. Find the curved surface
arca and the total surface area of the cone (Use = 3.14).

Solution : Here, 2 =16 cm and » = 12 cm.

So, froml? = h*+r?, we have

[= 16> +12> cm =20 cm
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So, curved surface area=  mr/
= 3.14 x 12 x 20 cm?
= 753.6 cm?
Further, total surface area= nrl + -
= (753.6 +3.14 x 12 x 12) cm?
= (753.6 +452.16) cm?
= 1205.76 cm?

Example 3 : A corn cob (see Fig. 11.5), shaped somewhat like a cone, has
the radius of its broadest end as 2.1 cm and length (height) as 20 cm. If
each 1 cm? of the surface of the cob carries an average of four grains, find
how many grains you would find on the entire cob. Fig. 11.5

Solution : Since the grains of corn are found only on the curved surface of the corn cob, we
would need to know the curved surface area of the corn cob to find the total number of grains on
it. In this question, we are given the height of the cone, so we need to find its slant height.

Here, [=r* + 1 = (2.1 +20* cm
= J404.41 cm=20.11 cm

Therefore, the curved surface area of the corn cob = v/

- % x 2.1 x 20.11 cm? = 132.726 cm? = 132.73 cm? (approx.)

Number of grains of corn on 1 cm? of the surface of the corn cob = 4
Therefore, number of grains on the entire curved surface of the cob
=132.73 x 4=1530.92 = 531 (approx.)

So, there would be approximately 531 grains of corn on the cob.

EXERCISE 11.1

22 )
Assume = ER unless stated otherwise.

1. Diameter of the base of a cone is 10.5 cm and its slant height is 10 cm. Find its curved
surface area.

2. Find the total surface area of a cone, if'its slant height is 21 m and diameter of its base is
24 m.
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. Curved surface area of a cone is 308 cm? and its slant height is 14 cm. Find

(1) radius of the base and (ii) total surface area of the cone.

. A conical tent is 10 m high and the radius of its base is 24 m. Find

(1) slant height of the tent.
(ii) cost of the canvas required to make the tent, if the cost of 1 m? canvas is X 70.

. What length of tarpaulin 3 m wide will be required to make conical tent of height 8§ m

and base radius 6 m? Assume that the extra length of material that will be required for
stitching margins and wastage in cutting is approximately 20 cm (Use = 3.14).

. The slant height and base diameter of a conical tomb are 25 m and 14 m respectively.

Find the cost of white-washing its curved surface at the rate of ¥ 210 per 100 m?.

. Ajoker’s cap is in the form of a right circular cone of base radius 7 cm and height

24 cm. Find the area of the sheet required to make 10 such caps.

. A bus stop is barricaded from the remaining part of the road, by using 50 hollow cones

made of recycled cardboard. Each cone has a base diameter of 40 cm and height 1 m. If
the outer side of each of the cones is to be painted and the cost of painting is I 12 per

m?, what will be the cost of painting all these cones? (Use m = 3.14 and take /104 =
1.02)

11.2 Surface Area of a Sphere

What is a sphere? Is it the same as a circle? Can you draw a circle on a paper? Yes, you can,
because a circle is a plane closed figure whose every point lies at a constant distance (called
radius) from a fixed point, which is called the centre of the circle. Now if you paste a string
along a diameter of a circular disc and rotate it as you had rotated the triangle in the previous
section, you see a new solid (see Fig 11.6). What does it resemble? A ball? Yes. It is called a
sphere.

A

Fig. 11.6
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Can you guess what happens to the centre of the circle, when it forms a sphere on rotation?
Of course, it becomes the centre of the sphere. So, a sphere is a three dimensional figure
(solid figure), which is made up of all points in the space, which lie at a constant distance
called the radius, from a fixed point called the centre of the sphere.

Note : A sphere is like the surface of a ball. The word solid sphere is used for the solid
whose surface is a sphere.

Activity : Have you ever played with a top or have you at least watched someone play with one?
You must be aware of how a string is wound around it. Now, let us take a rubber ball and drive a
nail into it. Taking support of the nail, let us wind a string around the ball. When you have
reached the ‘fullest’ part of the ball, use pins to keep the string in place, and continue to wind
the string around the remaining part of the ball, till you have completely covered the ball [see
Fig. 11.7(a)]. Mark the starting and finishing points on the string, and slowly unwind the string
from the surface of the ball.

Now, ask your teacher to help you in measuring the diameter of the ball, from which you easily
get its radius. Then on a sheet of paper, draw four circles with radius equal to the radius of the
ball. Start filling the circles one by one, with the string you had wound around the ball [see Fig.
11.7(b)].

(b)

Fig. 11.7
What have you achieved in all this?

The string, which had completely covered the surface area of the sphere, has been used to
completely fill the regions of four circles, all of the same radius as of the sphere.

So, what does that mean? This suggests that the surface area of a sphere of radius

= 4 times the area of a circle of radius » =4 x (1 r?)

So, Surface Area of a Sphere = 4 & 1
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where r is the radius of the sphere.

How many faces do you see in the surface of a sphere? There is only one, which is curved.

Now, let us take a solid sphere, and slice it exactly ‘through the middle’
with a plane that passes through its centre. What happens to the sphere?

Yes, it gets divided into two equal parts (see Fig. 11.8)! What will each
half be called? It is called a hemisphere. (Because ‘hemi’ also means
‘half”)

And what about the surface of a hemisphere? How many faces does it have?

Two! There is a curved face and a flat face (base).

. |
The curved surface area of a hemisphere is half the surface area of the sphere, which is > of

47,

Therefore, |Curved Surface Area of a Hemisphere = 27>

where r is the radius of the sphere of which the hemisphere is a part.

Now taking the two faces of a hemisphere, its surface area 2772 + 172

So, | Total Surface Area of a Hemisphere = 37

Example 4 : Find the surface area of a sphere of radius 7 cm.
Solution : The surface area of a sphere of radius 7 cm would be
22
4mrr =4 x - x 7 x7cm? =616 cm?

Example 5 : Find (i) the curved surface area and (ii) the total surface area of a hemisphere of
radius 21 cm.

Solution : The curved surface area of a hemisphere of radius 21 cm would be

— =2 x % x 21 x 21 em? = 2772 cm?
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(i1) the total surface area of the hemisphere would be
3w =3 % 2 x 21 % 21 e’ = 4158 e’

Example 6 : The hollow sphere, in which the circus motorcyclist performs his stunts, has a
diameter of 7 m. Find the area available to the motorcyclist for riding.

Solution : Diameter of the sphere = 7 m. Therefore, radius is 3.5 m. So, the riding space
available for the motorcyclist is the surface area of the ‘sphere’ which is given by

4 =4><% x3.5%x35m?

= 154 m?

Example 7 : A hemispherical dome of a building needs to be painted (see Fig. 11.9). If the
circumference of the base of the dome is 17.6 m, find the cost of painting it, given the cost of
painting is ¥ 5 per 100 cm?.

Solution : Since only the rounded surface of the dome is to be painted, we would need to find
the curved surface area of the hemisphere to know the extent of painting that needs to be done.
Now, circumference of the dome = 17.6 m. Therefore, 17.6 = 2ntr. So, the radius of the dome

=17.6 x

. m=28m
x 22

The curved surface area of the dome = 2mr?

=2x% x 2.8 X 2.8 m?

=49.28 m?

Now, cost of painting 100 cm? is ¥ 5.

So, cost of painting 1 m?> =% 500
Fig. 11.9

Therefore, cost of painting the whole dome
=3 500 x 49.28
=X 24640
EXERCISE 11.2

22 )
Assume nt= = unless stated otherwise.

1. Find the surface area of a sphere of radius:
(1) 10.5 cm (i1) 5.6 cm (iii) 14 cm
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11.3 Volume of a Right Circular Cone

In earlier classes we have studied the volumes of cube, cuboid and
cylinder

In Fig 11.11, can you see that there is a right circular cylinder and
a right circular cone of the same base radius and the same height?

. Find the surface area of a sphere of diameter:

(1) 14 cm (i1) 21 cm (iii) 3.5m

. Find the total surface area of a hemisphere of radius 10 cm. (Use t=3.14)
. The radius of a spherical balloon increases from 7 cm to 14 cm as air is being pumped

into it. Find the ratio of surface areas of the balloon in the two cases.

. A hemispherical bowl made of brass has inner diameter 10.5 cm. Find the cost of tin-

plating it on the inside at the rate of ¥ 16 per 100 cm?.

. Find the radius of a sphere whose surface area is 154 cm?.
. The diameter of the moon is approximately one fourth of the diameter of the earth. Find

the ratio of their surface areas.

. A hemispherical bowl is made of steel, 0.25 cm thick. The inner radius of the bowl is

5 cm. Find the outer curved surface area of the bowl. g
. Aright circular cylinder just encloses a sphere of radius
(see Fig. 11.10). Find

(1) surface area of the sphere,
(i1) curved surface area of the cylinder,
(ii1)  ratio of the areas obtained in (i) and (ii).

. e

Fig. 11.11

Activity : Try to make a hollow cylinder and a hollow cone like this with the same base radius
and the same height (see Fig. 11.11). Then, we can try out an experiment that will help us, to see
practically what the volume of a right circular cone would be!

r - % =
h h h
(@) (b) (©

Fig. 11.12
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So, let us start like this.

Fill the cone up to the brim with sand once, and empty it into the cylinder. We find that it
fills up only a part of the cylinder [see Fig. 11.12(a)].

When we fill up the cone again to the brim, and empty it into the cylinder, we see that the
cylinder is still not full [see Fig. 11.12(b)].

When the cone is filled up for the third time, and emptied into the cylinder, it can be seen
that the cylinder is also full to the brim [see Fig. 11.12(¢)].

With this, we can safely come to the conclusion that three times the volume of a cone,
makes up the volume of a cylinder, which has the same base radius and the same height as the
cone, which means that the volume of the cone is one-third the volume of the cylinder.

So, Volume of a Cone = %nrzh

where r is the base radius and / is the height of the cone.

Example 8 : The height and the slant height of a cone are 21 cm and 28 cm respectively. Find
the volume of the cone.

Solution : From 2 =r*+ h?, we have

r= P -n =28 -2 cm=7J/7cm

1 1 22
So, volume of the cone = gnrzh =3 X - x TN7 x 77 x 21 cm?
= 7546 cm’

Example 9 : Monica has a piece of canvas whose area is 551 m*. She uses it to have a conical
tent made, with a base radius of 7 m. Assuming that all the stitching margins and the wastage
incurred while cutting, amounts to approximately 1 m?, find the volume of the tent that can be
made with it.

Solution : Since the area of the canvas = 551 m? and area of the canvas lost in wastage is 1 m?,
therefore the area of canvas available for making the tent is (551 — 1) m* =550 m?.

Now, the surface area of the tent = 550 m? and the required base radius of the conical tent="7m

Note that a tent has only a curved surface (the floor of a tent is not covered by canvas!!).
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Therefore, curved surface area of tent = 550 m?.

That is, nrl = 550
22
or, El xTx[=1550
550
or, [=3 E m=25m
Now, P=r+h
Therefore, h= P - =25 -7 m=,/625-49m =576 m
=24 m
, 1, 1 22 ,
So, the volume of the conical tent = 3™ h= 357 % TxTx24m = 1232 m?.
EXERCISE 11.3
Assume = 2—72 , unless stated otherwise.
1. Find the volume of the right circular cone with

(1) radius 6 cm, height 7cm  (ii) radius 3.5 cm, height 12 cm

Find the capacity in litres of a conical vessel with
(1) radius 7 cm, slant height 25 cm(ii) height 12 cm, slant height 13 cm

The height of a cone is 15 cm. Ifits volume is 1570 cm?, find the radius of the base.
(Use 1= 3.14)

If the volume of a right circular cone of height 9 cm is 48 T cm’, find the diameter of'its
base.

A conical pit of top diameter 3.5 m is 12 m deep. What is its capacity in kilolitres?

The volume of a right circular cone is 9856 cm’. If the diameter of the base is 28 cm,
find

(1) height of the cone (i1) slant height of the cone

(iii)curved surface area of the cone

Aright triangle ABC with sides 5 cm, 12 cm and 13 cm is revolved about the side 12 cm.
Find the volume of the solid so obtained.

Ifthe triangle ABC in the Question 7 above is revolved about the side 5 cm, then find the
volume of the solid so obtained. Find also the ratio of the volumes of the two solids
obtained in Questions 7 and 8.

A heap of wheat is in the form of a cone whose diameter is 10.5 m and height is 3 m. Find
its volume. The heap is to be covered by canvas to protect it from rain. Find the area of
the canvas required.
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11.4 Volume of a Sphere

Now, let us see how to go about measuring the volume of a sphere. First, take two or three
spheres of different radii, and a container big enough to be able to put each of the spheres into
it, one at a time. Also, take a large trough in which you can place the container. Then, fill the
container up to the brim with water [see Fig. 11.13(a)].

Now, carefully place one of the spheres in the container. Some of the water from the
container will over flow into the trough in which it is kept [see Fig. 11.13(b)]. Carefully pour
out the water from the trough into a measuring cylinder (i.e., a graduated cylindrical jar) and
measure the water over flowed [see Fig. 11.13(c)]. Suppose the radius of the immersed sphere

is 7 (you can find the radius by measuring the diameter of the sphere). Then evaluate % . Do
you find this value almost equal to the measure of the volume over flowed?

6

~N

(a) (b)
Fig. 11.13

Once again repeat the procedure done just now, with a different size of sphere. Find the

radius R of this sphere and then calculate the value of §RR3- Once again this value is nearly

equal to the measure of the volume of the water displaced (over flowed) by the sphere. What
does this tell us? We know that the volume of the sphere is the same as the measure of the
volume of the water displaced by it. By doing this experiment repeatedly with spheres of varying
radii, we are getting the same result, namely, the volume of a sphere is equal to gﬂ times the
cube of'its radius. This gives us the idea that

Volume of a Sphere = gan

where r is the radius of the sphere.

Later, in higher classes it can be proved also. But at this stage, we will just take it as true.
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Since a hemisphere is half of a sphere, can you guess what the volume of a hemisphere will

1 4 2
? Yes, itis — of — nr’ = 3.
be? Yes, s of 3 ST

2
So,Volume of a Hemisphere = 5”3

where 7 is the radius of the hemisphere.
Let us take some examples to illustrate the use of these formulae.

Example 10 : Find the volume of a sphere of radius 11.2 cm.
Solution :Required volume = %mﬁ

= %x%x 11.2x11.2x11.2 ¢cm?® = 5887.32 cm?

Example 11 : A shot-putt is a metallic sphere of radius 4.9 cm. If the density of the metal is 7.8
g per cm?, find the mass of the shot-putt.

Solution : Since the shot-putt is a solid sphere made of metal and its mass is equal to the
product of its volume and density, we need to find the volume of the sphere.

4
Now, volume of the sphere = EW3

_ §x2—72><4.9><4.9><4.9cm3

= 493 cm’® (nearly)
Further, mass of 1 cm?® of metal is 7.8 g.
Therefore, mass of the shot-putt=7.8 x493 g
= 3845.44 g =3.85 kg (nearly)

Example 12 : Ahemispherical bowl has a radius of 3.5 cm. What would be the volume of water
it would contain?

Solution : The volume of water the bowl can contain

2
= "

2 22
— §x7><3.5 x3.5%3.5 cm?®=89.8 cm?
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SURFACE AREAS AND VOLUMES

EXERCISE 11.4

22 .
Assume nt= - unless stated otherwise.

. Find the volume of a sphere whose radius is

(1) 7cm (i1) 0.63 m

. Find the amount of water displaced by a solid spherical ball of diameter

(i) 28 cm (i) 0.21 m

. The diameter of a metallic ball is 4.2 cm. What is the mass of the ball, if the density of

the metal is 8.9 g per cm3?

. The diameter of the moon is approximately one-fourth of the diameter of the earth.

What fraction of the volume of the earth is the volume of the moon?

. How many litres of milk can a hemispherical bowl of diameter 10.5 cm hold?
. A hemispherical tank is made up of an iron sheet 1 cm thick. If the inner radius is 1 m,

then find the volume of the iron used to make the tank.

. Find the volume of a sphere whose surface area is 154 cm?,
. A dome of a building is in the form of a hemisphere. From inside, it was white-washed at

the cost of I 4989.60. If the cost of white-washing is X 20 per square metre, find the
(1) inside surface area of the dome, (i)  volume of the air inside the dome.

. Twenty seven solid iron spheres, each of radius 7 and surface area S are melted to form

a sphere with surface area S'. Find the
(1) radius ' of the new sphere, (ii) ratio of Sand S'.

10. A capsule of medicine is in the shape of a sphere of diameter 3.5 mm. How much

medicine (in mm?®) is needed to fill this capsule?

11.5 Summary
In this chapter, you have studied the following points:

® NS R RbND=

Curved surface area of a cone = nrl

Total surface area of a right circular cone = nrl + /2, i.e., r (I + r)
Surface area of a sphere of radius r =4 7 1

Curved surface area of a hemisphere = 27/

Total surface area of a hemisphere = 3772

Volume of a cone = %nrzh
Volume of a sphere of radius r = gnf

Volume of a hemisphere = %an

[Here, letters /, b, h, a, r, etc. have been used in their usual meaning, depending on the context. ]
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0962CH14

CHAPTER 12

STATISTICS
I

12.1 Graphical Representation of Data

The representation of data by tables has already been discussed. Now let us turn our attention to
another representation of data, i.e., the graphical representation. It is well said that one picture
is better than a thousand words. Usually comparisons among the individual items are best shown
by means of graphs. The representation then becomes easier to understand than the actual data.
We shall study the following graphical representations in this section.

(A) Bar graphs
(B) Histograms of uniform width, and of varying widths
(C) Frequency polygons

(A) Bar Graphs

In earlier classes, you have already studied and constructed bar graphs. Here we shall discuss
them through a more formal approach. Recall that a bar graph is a pictorial representation of
data in which usually bars of uniform width are drawn with equal spacing between them on one
axis (say, the x-axis), depicting the variable. The values of the variable are shown on the other
axis (say, the y-axis) and the heights of the bars depend on the values of the variable.

Example 1 : In a particular section of Class X, 40 students were asked about the months of
their birth and the following graph was prepared for the data so obtained:
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Number of Students ——>
—_ N N

o

T ———
EEEFEZT ¥ SR EB
=<z 22240228

Months of Birth—>

Jan
Feb.

Fig. 12.1

Observe the bar graph given above and answer the following questions:
(i) How many students were born in the month of November?
(i1) In which month were the maximum number of students born?

Solution : Note that the variable here is the ‘month of birth’, and the value of the variable is the
‘Number of students born’.

(1) 4 students were born in the month of November.
(i) The Maximum number of students were born in the month of August.
Letus now recall how a bar graph is constructed by considering the following example.

Example 2 : A family with a monthly income of I 20,000 had planned the following expenditures
per month under various heads:

Table 12.1
Heads Expenditure
(in thousand rupees)
Grocery 4
Rent 5
Education of children 5
Medicine 2
Fuel 2
Entertainment 1
Miscellaneous 1

Draw a bar graph for the data above.
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Solution : We draw the bar graph of this data in the following steps. Note that the unit in the
second column is thousand rupees. So, ‘4’ against ‘grocery’ means I 4000.

1. We represent the Heads (variable) on the horizontal axis choosing any scale, since the
width of the bar is not important. But for clarity, we take equal widths for all bars and
maintain equal gaps in between. Let one Head be represented by one unit.

2. Werepresent the expenditure (value) on the vertical axis. Since the maximum expenditure
is T 5000, we can choose the scale as 1 unit =3 1000.

3. To represent our first Head, i.e., grocery, we draw a rectangular bar with width
1 unit and height 4 units.

4. Similarly, other Heads are represented leaving a gap of 1 unit in between two consecutive
bars.

The bar graph is drawn in Fig. 12.2.

Expenditure (in thousand rupees)
— N W A N

o

Fig. 12.2

Here, you can easily visualise the relative characteristics of the data at a glance, e.g., the
expenditure on education is more than double that of medical expenses. Therefore, in some
ways it serves as a better representation of data than the tabular form.

Activity 1 : Continuing with the same four groups of Activity 1, represent the data by suitable
bar graphs.

Let us now see how a frequency distribution table for continuous class intervals can be
represented graphically.
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(B) Histogram

This is a form of representation like the bar graph, but it is used for continuous class intervals.
For instance, consider the frequency distribution Table 12.2, representing the weights of 36
students of a class:

Table 12.2
Weights (in kg) Number of students

30.5-35.5 9
35.5-40.5 6
40.5 - 45.5 15
45.5 - 50.5 3
50.5-55.5 1
55.5-60.5 2

Total 36

Let us represent the data given above graphically as follows:

(i) We represent the weights on the horizontal axis on a suitable scale. We can choose the
scale as 1 cm =5 kg. Also, since the first class interval is starting from 30.5 and not zero,
we show it on the graph by marking a kink or a break on the axis.

(i1) We represent the number of students (frequency) on the vertical axis on a suitable scale.
Since the maximum frequency is 15, we need to choose the scale to accomodate this
maximum frequency.

(iii) Wenow draw rectangles (or rectangular bars) of width equal to the class-size and lengths
according to the frequencies of the corresponding class intervals. For example, the
rectangle for the class interval 30.5 - 35.5 will be of width 1 cm and length 4.5 cm.

(iv) Inthis way, we obtain the graph as shown in Fig. 12.3:
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Number of Students ———>

30.5 355 405 455 505 555 605 655
Weights (inkg) ———>
Fig. 12.3

Observe that since there are no gaps in between consecutive rectangles, the resultant graph
appears like a solid figure. This is called a histogram, which is a graphical representation of a
grouped frequency distribution with continuous classes. Also, unlike a bar graph, the width of

the bar plays a significant role in its construction.

Here, in fact, areas of the rectangles erected are proportional to the corresponding
frequencies. However, since the widths of the rectangles are all equal, the lengths of the
rectangles are proportional to the frequencies. That is why, we draw the lengths according to

(iii) above.
Now, consider a situation different from the one above.

Example 3 : A teacher wanted to analyse the performance of two sections of students in a
mathematics test of 100 marks. Looking at their performances, she found that a few students
got under 20 marks and a few got 70 marks or above. So she decided to group them into intervals
of varying sizes as follows: 0 - 20, 20 - 30, . . ., 60 - 70, 70 - 100. Then she formed the
following table:
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Table 12.3
Marks Number of students
0-20 7
20 - 30 10
30 - 40 10
40 - 50 20
50 - 60 20
60 - 70 15
70 - above 8
Total 90

A histogram for this table was prepared by a student as shown in Fig. 12.4.
N

22 ¢
20 1
1871
16 1
14 1
12 1
10 1

Number of Students

N B Y

M
v

O 10 20 30 40 50 60 70 80 90 100
Marks >

Fig. 12.4

Carefully examine this graphical representation. Do you think that it correctly represents the data? No, the
graph is giving us a misleading picture. As we have mentioned earlier, the areas of the rectangles are proportional
to the frequencies in a histogram. Earlier this problem did not arise, because the widths of all the rectangles

were equal. But here, since the widths of the rectangles are varying, the histogram above does not
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give a correct picture. For example, it shows a greater frequency in the interval

70 - 100, than in 60 - 70, which is not the case.

So, we need to make certain modifications in the lengths of the rectangles so that the areas

are again proportional to the frequencies.

The steps to be followed are as given below:

1. Select a class interval with the minimum class size. In the example above, the minimum
class-size is 10.

2. The lengths of the rectangles are then modified to be proportionate to the class-size 10.

For instance, when the class-size is 20, the length of the rectangle is 7. So when the class-

o i 7
sizeis 10, the length of the rectangle will be — x10=3.5.

20

Similarly, proceeding in this manner, we get the following table:

Table 12.4
Marks Frequency Width of Length of the rectangle
the class
7
0-20 7 20 5 x10=35
10
20 - 30 10 10 = x 10= 10
10
30 - 40 10 10 = x 10= 10
40 - 50 20 10 % x 10 = 20
50 - 60 20 10 % % 10 = 20
60 - 70 15 10 %x10=15
70 - 100 8 30 3% x 10 = 2.67
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Since we have calculated these lengths for an interval of 10 marks in each case, we may call
these lengths as “proportion of students per 10 marks interval”.

So, the correct histogram with varying width is given in Fig. 12.5.
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Fig. 12.5

(C) Frequency Polygon

There is yet another visual way of representing quantitative data and its frequencies. This is a
polygon. To see what we mean, consider the histogram represented by Fig. 12.3. Let us join the
mid-points of the upper sides of the adjacent rectangles of this histogram by means of line
segments. Let us call these mid-points B, C, D, E, F and G. When joined by line segments, we
obtain the figure BCDEFG (see Fig. 12.6).
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To complete the polygon, we assume that there is a class interval with frequency zero before
30.5-35.5, and one after 55.5 - 60.5, and their mid-points are A and H, respectively. ABCDEFGH
is the frequency polygon corresponding to the data shown in Fig. 12.3. We have shown this in
Fig. 12.6.
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Fig. 12.6

Although, there exists no class preceding the lowest class and no class succeeding the highest
class, addition of the two class intervals with zero frequency enables us to make the area of the
frequency polygon the same as the area of the histogram. Why is this so? (Hint : Use the
properties of congruent triangles.)

Now, the question arises: how do we complete the polygon when there is no class preceding
the first class? Let us consider such a situation.
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Example 4 : Consider the marks, out of 100, obtained by 51 students of a class in a test, given
in Table 12.5.

Table 12.5
Marks Number of students
0-10 5
10 - 20 10
20 - 30 4
30 - 40 6
40 - 50 7
50 - 60 3
60 - 70 2
70 - 80 2
80 - 90 3
90 - 100 9
Total 51

Draw a frequency polygon corresponding to this frequency distribution table.

Solution : Let us first draw a histogram for this data and mark the mid-points of the tops of the
rectangles as B, C, D, E, F, G H, I, J, K, respectively. Here, the first class is 0-10. So, to find the
class preceeding 0-10, we extend the horizontal axis in the negative direction and find the mid-point
of the imaginary class-interval (—10) - 0. The first end point, i.e., B is joined to this mid-point
with zero frequency on the negative direction of the horizontal axis. The point where this line
segment meets the vertical axis is marked as A. Let L be the mid-point of the class succeeding
the last class of the given data. Then OABCDEFGHIJKL is the frequency polygon, which is
shown in Fig. 12.7.
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Frequency polygons can also be drawn independently without drawing histograms. For
this, we require the mid-points of the class-intervals used in the data. These mid-points of the
class-intervals are called class-marks.

To find the class-mark of a class interval, we find the sum of the upper limit and lower limit
ofa class and divide it by 2. Thus,

Upper limit + Lower limit
2

Class-mark =

Let us consider an example.

Example 5 : In a city, the weekly observations made in a study on the cost of living index are
given in the following table:

Table 12.6
Cost of living index Number of weeks

140 - 150 5

150 - 160 10

160 - 170 20

170 - 180 9

180 - 190 6

190 - 200 2
Total 52

Draw a frequency polygon for the data above (without constructing a histogram).

Solution : Since we want to draw a frequency polygon without a histogram, let us find the
class-marks of the classes given above, that is of 140 - 150, 150 - 160,....

For 140 - 150, the upper limit = 150, and the lower limit = 140

150 +140 _ 29
2 2

So, the class-mark = 0 _ 145.

Continuing in the same manner, we find the class-marks of the other classes as well. So, the
new table obtained is as shown in the following table:



Aesoaxss -ovo 159

BPIAEoD AcHIBHB0 BHowes PRy as0ghad KBo@orr Adkreo. & 585 Serodos®
SIRBPNODD SENB ©odtre gk Hothihen ©IIB0. St SEKS ©oBY iy HothHed S8HS é:ég&e»ée»

0 beoJeo.

558 wodBo BE) SEKB DB EXFCLOD AHH DG, BIHS ©HEHY Jnaed) Ldo o8t
gPAJ0. & dorw,

AN 05§ T 8NS5

888 PNens = 5

28 BRSPS Hodomro.

STl 5 1 el SH8oE® d55 Hah SrdER WS egiehios® roee b Hodesen 8o HEES®

azéega:cgo» :

$8% 12.6
S5 H5ah KrOY o0 Hogy

140 - 150 5
150 - 160 10
160 - 170 20
170 - 180 9
180 - 190 6
190 - 200 2
o 52

D Bzoaeds FPSsHIg 2255080R (VEPSDE0 AoHES) Achod.

F&5  BPS QS0 Aohome PS55dg 22s508HRY AcSTd ©HB0tnT)0 EHE 3OS Seeodos® S51K8
wodoren @o& 140 - 150, 150 - 160,.... o $558 Sogsendeos Edfromro.

140 - 150 3% s @058 = 150, $08cn 89S @58 = 140
150 +140 _ 29
2 2

=) Ral) EIPALER, WADS SK%e 518 HEgDendeoss Hdo EHFomro. ST Srobs Sréd HGE,
(Bods Srdedob:

0 _ 145,

B8 & SBKS Hggdens) =



160 STATISTICS

Table 12.7

Classes Class-marks Frequency
140 - 150 145 5
150 - 160 155 10
160 - 170 165 20
170 - 180 175 9
180 - 190 185 6
190 - 200 195 2

Total 52

We can now draw a frequency polygon by plotting the class-marks along the horizontal axis, the
frequencies along the vertical-axis, and then plotting and joining the points B(145, 5), C(155,
10), D(165, 20), E(175,9), F(185, 6) and G(195, 2) by line segments. We should not forget to
plot the point corresponding to the class-mark of the class 130 - 140 (just before the lowest
class 140 - 150) with zero frequency, that is, A(135, 0), and the point H (205, 0) occurs
immediately after G(195, 2). So, the resultant frequency polygon will be ABCDEFGH (see Fig.
12.8).

Number of Weeks ———>
to

N A N

S
2

O 135 145 155 165 175 185 195 205 215
Cost of Living Index ———>

Fig. 12.8
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Frequency polygons are used when the data is continuous and very large. It is very useful for
comparing two different sets of data of the same nature, for example, comparing the performance
of two different sections of the same class.

EXERCISE 12.1

1. A survey conducted by an organisation for the cause of illness and death among the
women between the ages 15 - 44 (in years) worldwide, found the following figures

(in %):
S.No.| Causes Female fatality rate (%)
1. | Reproductive health conditions 31.8
2. | Neuropsychiatric conditions 25.4
3. | Injuries 12.4
4. | Cardiovascular conditions 4.3
5. | Respiratory conditions 4.1
6. | Other causes 22.0

(i) Represent the information given above graphically.
(i1) Which condition is the major cause of women’s ill health and death worldwide?

(iii) Try to find out, with the help of your teacher, any two factors which play a major
role in the cause in (ii) above being the major cause.

2. The following data on the number of girls (to the nearest ten) per thousand boys in
different sections of Indian society is given below.

Section Number of girls per thousand boys
Scheduled Caste (SC) 940
Scheduled Tribe (ST) 970
Non SC/ST 920
Backward districts 950
Non-backward districts 920
Rural 930
Urban 910
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(1) Represent the information above by a bar graph.

(i1) In the classroom discuss what conclusions can be arrived at from the graph.

. Given below are the seats won by different political parties in the polling outcome of a

state assembly elections:
Political Party] A B C D E F

Seats Won 75 55 37 29 10 37
(1) Draw abar graph to represent the polling results.

(i1)) Which political party won the maximum number of seats?

. Thelength of 40 leaves of a plant are measured correct to one millimetre, and the obtained

data is represented in the following table:

Length (in mm) Number of leaves
118 - 126 3
127 - 135 5
136 - 144 9
145 - 153 12
154 - 162 5
163 - 171 4
172 - 180 2
(i) Draw a histogram to represent the given data. [Hint: First make the class intervals
continuous|

(i1) Is there any other suitable graphical representation for the same data?

(ii1) Is it correct to conclude that the maximum number of leaves are 153 mm long?
Why?

5. The following table gives the life times of 400 neon lamps:

Life time (in hours) Number of lamps
300 - 400 14
400 - 500 56
500 - 600 60
600 - 700 86
700 - 800 74
800 - 900 62
900 - 1000 48
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(1) Represent the given information with the help of a histogram.

(i1)) How many lamps have a life time of more than 700 hours?

. The following table gives the distribution of students of two sections according to the

marks obtained by them:
Section A Section B
Marks Frequency Marks Frequency
0-10 3 0-10 5
10 - 20 9 10 - 20 19
20 - 30 17 20 - 30 15
30 - 40 12 30 - 40 10
40 - 50 9 40 - 50 1

Represent the marks of the students of both the sections on the same graph by two
frequency polygons. From the two polygons compare the performance of the two
sections.

. The runs scored by two teams A and B on the first 60 balls in a cricket match are given

below:
Number of balls Team A Team B

1-6 2 5
7-12 1 6
13-18 8 2
19 - 24 9 10
25-30 4 5
31-36 5 6
37-42 6 3
43 - 48 10 4
49 - 54 6 8
55-60 2 10

Represent the data of both the teams on the same graph by frequency polygons.

[Hint : First make the class intervals continuous. ]
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8. A random survey of the number of children of various age groups playing in a park was

found as follows:
Age (in years) Number of children

1-2

2-3

3-5

5-7 12

7-10 9

10-15 10

15-17 4

Draw a histogram to represent the data above.

9. 100 surnames were randomly picked up from a local telephone directory and a frequency
distribution of the number of letters in the English alphabet in the surnames was found as

follows:
Number of letters Number of surnames
1 -4 6
4 -6 30
6 -8 44
8 -12 16
12 -20 4

(i) Draw a histogram to depict the given information.

(i1) Write the class interval in which the maximum number of surnames lie.

12.2 Summary

In this chapter, you have studied the following points:

1. How data can be presented graphically in the form of bar graphs, histograms and frequency
polygons.
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APPENDIX 2

INTRODUCTION TO MATHEMATICAL MODELLING
L

A2.1 Introduction

Right from your earlier classes, you have been solving problems related to the
real-world around you. For example, you have solved problems in simple interest using the
formula for finding it. The formula (or equation) is a relation between the interest and the
other three quantities that are related to it, the principal, the rate of interest and the period. This
formula is an example of a mathematical model. A mathematical model is a mathematical
relation that describes some real-life situation.

Mathematical models are used to solve many real-life situations like:
¢ Jlaunching a satellite.

e predicting the arrival of the monsoon.

e controlling pollution due to vehicles.

e reducing traffic jams in big cities.

In this chapter, we will introduce you to the process of constructing mathematical models,
which is called mathematical modelling. In mathematical modelling, we take a real-world
problem and write it as an equivalent mathematical problem. We then solve the mathematical
problem, and interpret its solution in terms of the real-world problem. After this we see to what
extent the solution is valid in the context of the real-world problem. So, the stages involved in
mathematical modelling are formulation, solution, interpretation and validation.

We will start by looking at the process you undertake when solving word problems, in Section
A2.2. Here, we will discuss some word problems that are similar to the ones you have solved
in your earlier classes. We will see later that the steps that are used for solving word problems
are some of those used in mathematical modelling also.
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In the next section, that is Section A2.3, we will discuss some simple models.

In Section A2.4, we will discuss the overall process of modelling, its advantages and some
of its limitations.

A2.2 Review of Word Problems

In this section, we will discuss some word problems that are similar to the ones that you have
solved in your earlier classes. Let us start with a problem on direct variation.

Example 1 : I travelled 432 kilometres on 48 litres of petrol in my car. [ have to go by my car
to a place which is 180 km away. How much petrol do I need?

Solution : We will list the steps involved in solving the problem.

Step 1 : Formulation : You know that farther we travel, the more petrol we require, that is,
the amount of petrol we need varies directly with the distance we travel.

Petrol needed for travelling 432 km = 48 litres
Petrol needed for travelling 180 km = ?
Mathematical Description : Let
x = distance I travel
y = petrol I need
y varies directly with x.
So, vy = kx, where k is a constant.

I can travel 432 kilometres with 48 litres of petrol.

So, y =48, x =432.
_y_48_1
Therefore, k= T
Since ¥y = kx,
1
therefore, y=gx (1)

Equation or Formula (1) describes the relationship between the petrol needed and distance
travelled.

Step 2 : Solution : We want to find the petrol we need to travel 180 kilometres; so, we have
to find the value of y when x = 180. Putting x =180 in (1), we have
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180
= —=20
y 9 *
Step 3 : Interpretation : Since y = 20, we need 20 litres of petrol to travel
180 kilometres.

Did it occur to you that you may not be able to use the formula (1) in all situations? For
example, suppose the 432 kilometres route is through mountains and the 180 kilometres route
is through flat plains. The car will use up petrol at a faster rate in the first route, so we cannot
use the same rate for the 180 kilometres route, where the petrol will be used up at a slower rate.
So the formula works if all such conditions that affect the rate at which petrol is used are the
same in both the trips. Or, if there is a difference in conditions, the effect of the difference on
the amount of petrol needed for the car should be very small. The petrol used will vary directly
with the distance travelled only in such a situation. We assumed this while solving the problem.

Example 2 : Suppose Sudhir has invested ¥ 15,000 at 8% simple interest per year. With the
return from the investment, he wants to buy a washing machine that costs
< 19,000. For what period should he invest ¥ 15,000 so that he has enough money to buy a
washing machine?

Solution : Step 1 : Formulation of the problem : Here, we know the principal and the rate of
interest. The interest is the amount Sudhir needs in addition to 15,000 to buy the washing machine.
We have to find the number of years.

Mathematical Description : The formula for simple interest is [ = fgg )
where P = Principal,
n = Number of years,
r % = Rate of interest
I = Interest earned
Here, the principal = I 15,000
The money required by Sudhir for buying a washing machine =< 19,000
So, the interest to be earned = < (19,000 — 15,000)
=< 4,000

The number of years for which ¥ 15,000 is deposited = n
The interest on X 15,000 for n years at the rate of 8% =1

15000 x n x 8

Then, I= 100
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So, I=1200n (1)
gives the relationship between the number of years and interest, if I 15000 is invested at an

annual interest rate of 8%.

We have to find the period in which the interest earned is I 4000. Putting I = 4000 in (1),
we have

4000 = 1200n (2)
Step 2 : Solution of the problem : Solving Equation (2), we get
4000 .1
1200 3

. 1 . . .
Step 3 : Interpretation : Since n = 35 and one third of a year is 4 months, Sudhir can buy

a washing machine after 3 years and 4 months.

Can you guess the assumptions that you have to make in the example above? We have to
assume that the interest rate remains the same for the period for which we calculate the interest.

. P . . .
Otherwise, the formula I = an will not be valid. We have also assumed that the price of the

washing machine does not increase by the time Sudhir has gathered the money.

Example 3 : Amotorboat goes upstream on ariver and covers the distance between two towns
on the riverbank in six hours. It covers this distance downstream in five hours. If the speed of
the stream is 2 km/h, find the speed of the boat in still water.

Solution : Step 1 : Formulation : We know the speed of the river and the time taken to cover
the distance between two places. We have to find the speed of the boat in still water.

Mathematical Description : Let us write x for the speed of the boat, ¢ for the time taken and
y for the distance travelled. Then

y=ix (1)
Let d be the distance between the two places.
While going upstream, the actual speed of the boat

= speed of the boat — speed of the river,

because the boat is travelling against the flow of the river.
So, the speed of the boat upstream = (x — 2) km/h
It takes 6 hours to cover the distance between the towns upstream. So, from (1),
we get d=6(x—-2) (2)
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When going downstream, the speed of the river has to be added to the speed of the boat.
So, the speed of the boat downstream = (x + 2) km/h
The boat takes 5 hours to cover the same distance downstream. So,
d=5x+2) 3)
From (2) and (3), we have
5x+2)=6(x-2) (4)
Step 2 : Finding the Solution
Solving for x in Equation (4), we get x =22.
Step 3 : Interpretation
Since x = 22, therefore the speed of the motorboat in still water is 22 km/h.

In the example above, we know that the speed of the river is not the same everywhere. It
flows slowly near the shore and faster at the middle. The boat starts at the shore and moves to
the middle of the river. When it is close to the destination, it will slow down and move closer to
the shore. So, there is a small difference between the speed of the boat at the middle and the
speed at the shore. Since it will be close to the shore for a small amount of time, this difference
in speed of the river will affect the speed only for a small period. So, we can ignore this difference
in the speed of the river. We can also ignore the small variations in speed of the boat. Also, apart
from the speed of the river, the friction between the water and surface of the boat will also
affect the actual speed of the boat. We also assume that this effect is very small.

So, we have assumed that

1. The speed of the river and the boat remains constant all the time.

2. The effect of friction between the boat and water and the friction due to air is negligible.
We have found the speed of the boat in still water with the assumptions (hypotheses) above.

As we have seen in the word problems above, there are 3 steps in solving a word problem.
These are

1. Formulation : We analyse the problem and see which factors have a major influence
on the solution to the problem. These are the relevant factors. In our first example, the
relevant factors are the distance travelled and petrol consumed. We ignored the other
factors like the nature of the route, driving speed, etc. Otherwise, the problem would
have been more difficult to solve. The factors that we ignore are the irrelevant factors.
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We then describe the problem mathematically, in the form of one or more
mathematical equations.

2. Solution : We find the solution of the problem by solving the mathematical equations
obtained in Step 1 using some suitable method.

3. Interpretation : We see what the solution obtained in Step 2 means in the context of
the original word problem.

Here are some exercises for you. You may like to check your understanding of the steps
involved in solving word problems by carrying out the three steps above for the following

problems.
EXERCISE A2.1

In each of the following problems, clearly state what the relevant and irrelevant factors are
while going through Steps 1, 2 and 3 given above.

1. Suppose a company needs a computer for some period of time. The company can either
hire a computer for I 2,000 per month or buy one for X 25,000. If the company has to
use the computer for a long period, the company will pay such a high rent, that buying a
computer will be cheaper. On the other hand, if the company has to use the computer for
say, just one month, then hiring a computer will be cheaper. Find the number of months
beyond which it will be cheaper to buy a computer.

2. Suppose a car starts from a place A and travels at a speed of 40 km/h towards another
place B. Atthe same instance, another car starts from B and travels towards A at a speed
of 30 km/h. Ifthe distance between A and B is 100 km, after how much time will the cars
meet?

3. The moon is about 3,84,000 km from the earth, and its path around the earth is nearly
circular. Find the speed at which it orbits the earth, assuming that it orbits the earth in 24
hours. (Use ©=3.14)

4. A family pays < 1000 for electricity on an average in those months in which it does not
use a water heater. In the months in which it uses a water heater, the average electricity
bill is ¥ 1240. The cost of using the water heater is ¥ 8.00 per hour. Find the average
number of hours the water heater is used in a day.

A2.3 Some Mathematical Models

So far, nothing was new in our discussion. In this section, we are going to add another step to the three steps
that we have discussed earlier. This step is called validation. What does validation mean? Let us see. Ina
real-life situation, we cannot accept a model that gives us an answer that does not match the reality. This
process of checking the answer against reality, and modifying the mathematical description if necessary, is
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called validation. This is a very important step in modelling. We will introduce you to this step
in this section.

First, letus look at an example, where we do not have to modify our model after validation.

Example 4 : Suppose you have a room of length 6 m and breadth 5 m. You want to cover the
floor of the room with square mosaic tiles of side 30 cm. How many tiles will you need? Solve
this by constructing a mathematical model.

Solution : Formulation : We have to consider the area of the room and the area of a tile for

solving the problem. The side of the tile is 0.3 m. Since the length is 6 m, we can fitin 0—63 =20

tiles along the length of the room in one row (see Fig. A2.1.).

Area covered by
full tiles

4.8 m

Fig. A2.1

Since the breadth ofthe room is 5 metres, we have 0—53 =16.67. So, we can fit in 16 tiles in

a column. Since 16 x 0.3 =4.8,5—4.8 =0.2 metres aléng the breadth will not be covered by
tiles. This part will have to be covered by cutting the other tiles. The breadth of the floor left
uncovered, 0.2 metres, is more than half the length of a tile, which is 0.3 m. So we cannot break
a tile into two equal halves and use both the halves to cover the remaining portion.

Mathematical Description : We have:
Total number of tiles required = (Number of tiles along the length

x Number of tiles along the breadth) + Number of tiles along the uncovered area

(1)
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Solution : As we said above, the number of tiles along the length is 20 and the number of
tiles along the breadth is 16. We need 20 more tiles for the last row. Substituting these values in
(1), we get (20 x 16) + 20 =320 + 20 = 340.

Interpretation : We need 340 tiles to cover the floor.

Validation : In real-life, your mason may ask you to buy some extra tiles to replace those
that get damaged while cutting them to size. This number will of course depend upon the skill of
your mason! But, we need not modify Equation (1) for this. This gives you a rough idea of the
number of tiles required. So, we can stop here.

Let us now look at another situation now.

Example 5 : In the year 2000, 191 member countries of the U.N. signed a declaration. In this
declaration, the countries agreed to achieve certain development goals by the year 2015. These
are called the millennium development goals. One of these goals is to promote gender equality.
One indicator for deciding whether this goal has been achieved is the ratio of girls to boys in
primary, secondary and tertiary education. India, as a signatory to the declaration, is committed
to improve this ratio. The data for the percentage of girls who are enrolled in primary schools
is given in Table A2.1.

Table A2.1
Year Enrolment
(in %)
1991-92 41.9
1992-93 42.6
1993-94 42.7
1994-95 42.9
1995-96 43.1
1996-97 43.2
1997-98 43.5
1998-99 43.5
1999-2000 43.6*
2000-01 43.7*
2001-02 44.1*

Source : Educational statistics, webpage of Department of Education, GOL.

* indicates that the data is provisional.
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Using this data, mathematically describe the rate at which the proportion of girls enrolled in
primary schools grew. Also, estimate the year by which the enrolment of girls will reach 50%.

Solution : Let us first convert the problem into a mathematical problem.

Step 1 : Formulation : Table A2.1 gives the enrolment for the years 1991-92, 1992-93,
etc. Since the students join at the beginning of an academic year, we can take the years as 1991,
1992, etc. Let us assume that the percentage of girls who join primary schools will continue to
grow at the same rate as the rate in Table A2.1. So, the number of years is important, not the
specific years. (To give a similar situation, when we find the simple interest for, say, I 1500 at
the rate of 8% for three years, it does not matter whether the three-year period is from 1999 to
2002 or from 2001 to 2004. What is important is the interest rate in the years being considered).
Here also, we will see how the enrolment grows after 1991 by comparing the number of years
that has passed after 1991 and the enrolment. Let us take 1991 as the Oth year, and write 1 for
1992 since 1 year has passed in 1992 after 1991. Similarly, we will write 2 for 1993, 3 for
1994, etc. So, Table A2.1 will now look like as Table A2.2.

Table A2.2
Year Enrolment

(in %)
0 41.9
1 42.6
2 42.7
3 42.9
4 43.1
5 43.2
6 43.5
7 43.5
8 43.6
9 43.7
10 44.1
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The increase in enrolment is given in the following table :

Table A2.3
Year Enrolment Increase

(in %)
0 41.9 0
1 42.6 0.7
2 42.7 0.1
3 42.9 0.2
4 43.1 0.2
5 43.2 0.1
6 43.5 0.3
7 43.5 0
8 43.6 0.1
9 43.7 0.1
10 44.1 0.4

At the end of the one-year period from 1991 to 1992, the enrolment has increased by 0.7%
from 41.9% to 42.6%. At the end of the second year, this has increased by 0.1%, from 42.6% to
42.7%. From the table above, we cannot find a definite relationship between the number of
years and percentage. But the increase is fairly steady. Only in the first year and in the 10th year
there is a jump. The mean of the values is

07+01+02+02+01+03+0+0.1+0.1+04

10 =0.22

Let us assume that the enrolment steadily increases at the rate of 0.22 per cent.

Mathematical Description : We have assumed that the enrolment increases steadily at
the rate of 0.22% per year.

So, the Enrolment Percentage (EP) in the first year =41.9 +0.22

EP in the second year =41.9 +0.22 +0.22=41.9 + 2 x 0.22

EP in the third year =41.9 +0.22 +0.22 + 0.22 =41.9 + 3 x 0.22

So, the enrolment percentage in the nth year =41.9 + 0.22n, forn >1. (1)
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Now, we also have to find the number of years by which the enrolment will reach 50%. So,
we have to find the value of # in the equation or formula

50 =419+0.22n (2)
Step 2 : Solution : Solving (2) for n, we get
50-419 8.1
n= = =36.8
0.22 0.22

Step 3 : Interpretation : Since the number of years is an integral value, we will take the
next higher integer, 37. So, the enrolment percentage will reach 50% in
1991 + 37 = 2028.

In a word problem, we generally stop here. But, since we are dealing with a real-life situation,
we have to see to what extent this value matches the real situation.

Step 4 : Validation: Let us check if Formula (2) is in agreement with the reality. Let us
find the values for the years we already know, using Formula (2), and compare it with the known
values by finding the difference. The values are given in Table A2.4.

Table A2.4
Year Enrolment Values given by (2) Difference

(in %) (in %) (in %)
0 41.9 41.90 0
1 42.6 42.12 0.48
2 42.7 42.34 0.36
3 42.9 42.56 0.34
4 43.1 42.78 0.32
5 43.2 43.00 0.20
6 43.5 43.22 0.28
7 43.5 43.44 0.06
8 43.6 43.66 —-0.06
9 43.7 43.88 —0.18
10 44.1 44.10 0.00

As you can see, some of the values given by Formula (2) are less than the actual
values by about 0.3% or even by 0.5%. This can give rise to a difference of about 3 to 5
years since the increase per year is actually 1% to 2%. We may decide that this
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4 43.1 42.78 0.32
5 43.2 43.00 0.20
6 43.5 43.22 0.28
7 43.5 43.44 0.06
8 43.6 43.66 —-0.06
9 43.7 43.88 —0.18
10 441 44.10 0.00
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much of a difference is acceptable and stop here. In this case, (2) is our mathematical model.

Suppose we decide that this error is quite large, and we have to improve this model. Then
we have to go back to Step 1, the formulation, and change Equation (2). Let us do so.

Step 1 : Reformulation : We still assume that the values increase steadily by 0.22%, but
we will now introduce a correction factor to reduce the error. For this, we find the mean of all
the errors. This is

0+048+036+0.34+0.32+02+028+0.06 - 0.06 - 0.18 +0
10

=0.18
We take the mean of the errors, and correct our formula by this value.

Revised Mathematical Description : Let us now add the mean of the errors to our formula
for enrolment percentage given in (2). So, our corrected formula is:

Enrolment percentage in the nth year =41.9 +0.22n + 0.18 =42.08 + 0.22n,
forn>1 (3)
We will also modify Equation (2) appropriately. The new equation for 7 is:

50 = 42.08 + 0.22n (4)

Step 2 : Altered Solution : Solving Equation (4) for n, we get

50 -42.08 7.92
0.22 0.22

Step 3 : Interpretation: Since n = 36, the enrolment of girls in primary schools will reach
50% in the year 1991 + 36 =2027.

Step 4 : Validation: Once again, let us compare the values got by using Formula (4) with
the actual values. Table A2.5 gives the comparison.
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Table A2.5
Year | Enrolment | Values | Difference | Values | Difference
(in %) given between given between
by (2) values by (4) values
0 41.9 41.90 0 41.9 0
1 42.6 42.12 0.48 42.3 0.3
2 42.7 42.34 0.36 42.52 0.18
3 42.9 42.56 0.34 42.74 0.16
4 43.1 42.78 0.32 42.96 0.14
5 43.2 43.00 0.2 43.18 0.02
6 43.5 43.22 0.28 43.4 0.1
7 43.5 43.44 0.06 43.62 -0.12
8 43.6 43.66 —0.06 43.84 - 0.24
9 43.7 43.88 - 0.18 44.06 —0.36
10 441 44.10 0 44.28 - 0.18

As you can see, many of the values that (4) gives are closer to the actual value than the
values that (2) gives. The mean of the errors is 0 in this case.

We will stop our process here. So, Equation (4) is our mathematical description that gives
a mathematical relationship between years and the percentage of enrolment of girls of the total
enrolment. We have constructed a mathematical model that describes the growth.

The process that we have followed in the situation above is called mathematical
modelling.

We have tried to construct a mathematical model with the mathematical tools that we already
have. There are better mathematical tools for making predictions from the data we have. But,
they are beyond the scope of this course. Our aim in constructing this model is to explain the
process of modelling to you, not to make accurate predictions at this stage.

You may now like to model some real-life situations to check your understanding of our
discussion so far. Here is an Exercise for you to try.
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EXERCISE A2.2

1. We have given the timings of the gold medalists in the 400-metre race from the time the
event was included in the Olympics, in the table below. Construct a mathematical model
relating the years and timings. Use it to estimate the timing in the next Olympics.

Table A2.6
Year Timing (in seconds)
1964 52.01
1968 52.03
1972 51.08
1976 49.28
1980 48.88
1984 48.83
1988 48.65
1992 48.83
1996 48.25
2000 49.11
2004 49.41

A2.4 The Process of Modelling, its Advantages and Limitations

Let us now conclude our discussion by drawing out aspects of mathematical modelling that
show up in the examples we have discussed. With the background of the earlier sections, we are
now in a position to give a brief overview of the steps involved in modelling.

Step 1 : Formulation : You would have noticed the difference between the formulation
part of Example 1 in Section A2.2 and the formulation part of the model we discussed in A2.3.
In Example 1, all the information is in a readily usable form. But, in the model given in A2.3 this
is not so. Further, it took us some time to find a mathematical description. We tested our first
formula, but found that it was not as good as the second one we got. This is usually true in
general, i.e. when trying to model real-life situations; the first model usually needs to be revised.
When we are solving a real-life problem, formulation can require a lot of time. For example,
Newton’s three laws of motion, which are mathematical descriptions of motion, are simple
enough to state. But, Newton arrived at these laws after studying a large amount of data and the
work the scientists before him had done.
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Formulation involves the following three steps :

(i) Stating the problem : Often, the problem is stated vaguely. For example, the broad
goal is to ensure that the enrolment of boys and girls are equal. This may mean that 50%
of the total number of boys of the school-going age and 50% of the girls of the school-
going age should be enrolled. The other way is to ensure that 50% of the school-going
children are girls. In our problem, we have used the second approach.

(ii) Identifying relevant factors : Decide which quantities and relationships are important
for our problem and which are unimportant and can be neglected. For example, in our
problem regarding primary schools enrolment, the percentage of girls enrolled in the
previous year can influence the number of girls enrolled this year. This is because, as
more and more girls enrol in schools, many more parents will feel they also have to put
their daughters in schools. But, we have ignored this factor because this may become
important only after the enrolment crosses a certain percentage. Also, adding this factor
may make our model more complicated.

(iii)Mathematical Description : Now suppose we are clear about what the problem is and
what aspects of it are more relevant than the others. Then we have to find a relationship
between the aspects involved in the form of an equation, a graph or any other suitable
mathematical description. If it is an equation, then every important aspect should be
represented by a variable in our mathematical equation.

Step 2 : Finding the solution : The mathematical formulation does not give the solution.
We have to solve this mathematical equivalent of the problem. This is where your mathematical
knowledge comes in useful.

Step 3 : Interpretating the solution : The mathematical solution is some value or values
of the variables in the model. We have to go back to the real-life problem and see what these
values mean in the problem.

Step 4 : Validating the solution : As we saw in A2.3, after finding the solution we will have
to check whether the solution matches the reality. If it matches, then the mathematical model is
acceptable. If the mathematical solution does not match, we go back to the formulation step
again and try to improve our model.

This step in the process is one major difference between solving word problems and
mathematical modelling. This is one of the most important step in modelling that is missing in
word problems. Of course, it is possible that in some real-life situations, we do not need to
validate our answer because the problem is simple and we get the correct solution right away.
This was so in the first model we considered in A2.3.
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We have given a summary of the order in which the steps in mathematical modelling are
carried out in Fig. A2.2 below. Movement from the validation step to the formulation step is
shown using a dotted arrow. This is because it may not be necessary to carry out this step

again.
Formulation of the Solution of the
problem —> problem
Checking/validating Interpretation of the
the solution — solution
Fig.A2.2

Now that you have studied the stages involved in mathematical modelling, let us discuss
some of its aspects.

The aim of mathematical modelling is to get some useful information about a real-world
problem by converting it into a mathematical problem. This is especially useful when it is not
possible or very expensive to get information by other means such as direct observation or by
conducting experiments.

You may also wonder why we should undertake mathematical modelling? Let us look at
some advantages of modelling. Suppose we want to study the corrosive effect of the discharge
of the Mathura refinery on the Taj Mahal. We would not like to carry out experiments on the Taj
Mabhal directly since it may not be safe to do so. Of course, we can use a scaled down physical
model, but we may need special facilities for this, which may be expensive. Here is where
mathematical modelling can be of great use.

Again, suppose we want to know how many primary schools we will need after 5 years.
Then, we can only solve this problem by using a mathematical model. Similarly, it is only through
modelling that scientists have been able to explain the existence of so many phenomena.

You saw in Section A2.3, that we could have tried to improve the answer in the second
example with better methods. But we stopped because we do not have the mathematical tools.
This can happen in real-life also. Often, we have to be satisfied with very approximate answers,
because mathematical tools are not available. For example, the model equations used in
modelling weather are so complex that mathematical tools to find exact solutions are not
available.
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You may wonder to what extent we should try to improve our model. Usually, to improve it,
we need to take into account more factors. When we do this, we add more variables to our
mathematical equations. We may then have a very complicated model that is difficult to use. A
model must be simple enough to use. A good model balances two factors:

1. Accuracy, i.e., how close it is to reality.
2. Ease of use.

For example, Newton’s laws of motion are very simple, but powerful enough to model many
physical situations.

So, is mathematical modelling the answer to all our problems? Not quite! It has its limitations.

Thus, we should keep in mind that a model is only a simplification of areal-world problem,
and the two are not the same. It is something like the difference between a map that gives the
physical features of a country, and the country itself. We can find the height of a place above the
sea level from this map, but we cannot find the characteristics of the people from it. So, we
should use a model only for the purpose it is supposed to serve, remembering all the factors we
have neglected while constructing it. We should apply the model only within the limits where it
is applicable. In the later classes, we shall discuss this aspect a little more.

EXERCISE A2.3

1. How are the solving of word problems that you come across in textbooks different from
the process of mathematical modelling?

2. Suppose you want to minimise the waiting time of vehicles at a traffic junction of four
roads. Which of these factors are important and which are not?

(1) Price of petrol.
(i1) The rate at which the vehicles arrive in the four different roads.

(iii)  The proportion of slow-moving vehicles like cycles and rickshaws and fast moving
vehicles like cars and motorcycles.

A2.5 Summary

In this Appendix, you have studied the following points :
1. The steps involved in solving word problems.

2. Construction of some mathematical models.
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3. The steps involved in mathematical modelling given in the box below.

1. Formulation :
(1) Stating the question
(i1))  Identifying the relevant factors
(iii)  Mathematical description

2. Finding the solution.

3. Interpretation of the solution in the context of the real-world
problem.

4. Checking/validating to what extent the model is a good

representation of the problem being studied.

4. The aims, advantages and limitations of mathematical modelling.
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ANSWERS/HINTS

EXERCISE 6.1

1. 30°,250° 2. 126° 4. Sum of all the angles at a point =360°

5. £Q0S=ZSOR+ ZROQand ZPOS=~2POR—-ZSOR. 6. 122°, 302°

EXERCISE 6.2
1. 126° 2. 126°, 36°, 54° 3. 60° 4. 50°, 77°
5. Angle of incidence = Angle of reflection. At point B, draw BE | PQ and at point C, draw
CF LRS.
EXERCISE 7.1
1. They are equal. 6. /BAC=ZDAE
EXERCISE 7.2
6. /BCD=/BCA+4DCA=4B+4D 7. eachis of 45°
EXERCISE 7.3

3. (ii) From (i), £ ABM = Z PQN
EXERCISE 8.1
3. (i) From A DAC and A BCA, show £ DAC =2 BCAand £ ACD = Z CAB, etc.

(i1) Show £ BAC = Z BCA, using Theorem 8 4.
EXERCISE 8.2

2. Show PQRS is a parallelogram. Also show PQ || AC and PS || BD. So, £ P=90°.
5. AECF is aparallelogram. So, AF || CE, etc.
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EXERCISE 9.1

. Prove exactly as Theorem 9.1 by considering chords of congruent circles.

. Use SAS axiom of congruence to show the congruence of the two triangles.

EXERCISE 9.2

. 6 cm. First show that the line joining centres is perpendicular to the radius of the smaller

circle and then that common chord is the diameter of the smaller circle.

. IfAB, CD are equal chords of a circle with centre O intersecting at E, draw perpendiculars

OM on AB and ON on CD and join OE. Show that right triangles OME and ONE are
congruent.

. Proceed as in Example 2. 4. Draw perpendicular OM on AD.
. Represent Reshma, Salma and Mandip by R, S

and M respectively. Let KR = x m (see figure).

0
Area of A ORS =%x x 5. Also, area of A ORS = R% "
T IK
LRsxoL=1x6x4 %/
2 2 ' <

Find x and hence RM.

. Use the properties of an equilateral triangle and also Pythagoras Theorem.

EXERCISE 9.3
. 45° 2. 150°, 30° 3. 10°
. 80° S. 110° 6. ZBCD=80°and ZECD=50°

. Draw perpendiculars AM and BN on CD (AB || CD and AB < CD). Show

A AMD = A BNC. This gives £ C= £ D and, therefore, L A+ £ C=180°.
EXERCISE 10.1

V3

- ,900,3cm> 2. T 1650000 3. 20/2m?

. 2Wllem? 5. 9000 cm? 6. 9415 cm?
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EXERCISE 11.1
1. 165 cm? 2. 124457 m?> 3. (i) 7 cm (ii) 462 cm?
4. (i) 26 m (i) T 137280 5. 63 m 6.3 1155
7. 5500 cm? 8. T 384.34 (approx.)
EXERCISE 11.2
1. (i) 1386 cm? (i) 394.24 cm? (iii) 2464 cm?
2. (i) 616 cm? (ii) 1386 cm? (iii) 38.5 m?
3. 942 cm? 4.1:4 5.3 27.72
6. 3.5cm 7.1:16 8. 173.25 cm?
9. (i) 4w (i1) 4mr? (i) 1:1
EXERCISE 11.3
1. (i) 264 cm’(ii) 154cm® 2. (i) 1.232 1 (ii) %1
3. 10 cm 4. 8 cm 5. 38.5 Kl
6. (i) 48 cm (ii) 50 cm (iii) 2200 cm? 7. 100m cm® 8. 2401 cm?; 5
12
9. 86.625x m?, 99.825 m?
EXERCISE 11.4
1 (i) 1437 5 e’ (ii) 1.05 m* (approx.)
2. (i) 11498 % cm’ (i1) 0.004851 m? 3. 345.39 g (approx.)
4. % 5. 0.303/ (approx.) 6. 0.06348 m* (approx.)
7. 179§cm3 8. (1) 249.48 m* (ii) 523.9 m’ (approx.) 9. 1) 3r (i) 1:9

10.22.46 mm? (approx.)
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EXERCISE 12.1

1. (ii)Reproductive health conditions.

3. (ii)Party A 4. (i1) Frequency polygon (iii) No 5. (i) 184
8. |Age (in years) | Frequency | Width | Length of the rectangle
1-2 5 1 2x1=5
2-3 3 1 2x1=3
3-5 6 2 2x1-3
5-7 12 2 Sx1=6
7-10 9 3 Zx1=3
10-15 10 5 S x1=2
15-17 4 2 g =2

Now, you can draw the histogram, using these lengths.

9. (i) Number of letters [Frequency| Width of | Length of
interval | rectangle

1-4 6 3 §x2=4

4-6 30 2 k2230
6-8 44 2 % 2 =44

8-12 16 4 % x2=8

12 - 20 4 8 g D=

Now, draw the histogram.
(i) 6 -8
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EXERCISEALl.1

. (1) False. There are 12 months in a year.

(i1) Ambiguous. In a given year, Diwali may or may not fall on a Friday.

(ii1) Ambiguous. At some time in the year, the temperature in Magadi, may be 26° C.
(iv) Always true.

(v) False. Dogs cannot fly.

(vi) Ambiguous. In a leap year, February has 29 days.

. (1) False. The sum of the interior angles of a quadrilateral is 360°.

(i1) True (iii) True (iv) True

(v) False, for example, 7+ 5 =12, which is not an odd number.

. (1) All prime numbers greater than 2 are odd.

(i1) Two times a natural number is always even. (iii) Foranyx>1,3x+1>4.
(iv) Forany x>0, x*>0.
(v) Inan equilateral triangle, a median is also an angle bisector.

EXERCISE A1.2

. (1) Humans are vertebrates. (ii) No. Dinesh could have got his hair cut by anybody

else. (iil)) Gulaghasaredtongue. (iv) We conclude that the gutters will have to be
cleaned tomorrow.  (v) All animals having tails need not be dogs. For example, animals
such as buffaloes, monkeys, cats, etc. have tails but are not dogs.

. You need to turn over B and 8. If B has an even number on the other side, then the rule has

been broken. Similarly, if 8 has a consonant on the other side, then the rule has been
broken.

EXERCISE A1.3

. Three possible conjectures are:

(1) The product of any three consecutive even numbers is even. (ii) The product of
any three consecutive even numbers is divisible by 4.  (iii) The product of any three
consecutive even numbers is divisible by 6.

. Line4:1331=11° Line5:14 64 1=11% the conjecture holds for Line 4 and Line

5; No, because 11° # 15101051.

T, +T,=25=5; T  +T =n’
. 1111112 = 12345654321 ; 1111111% = 1234567654321
. Student’s own answer. For example, Euclid’s postulates.
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EXERCISE Al14

1. (i) Youcan give any two triangles with the same angles but of different sides.
(i1) A thombus has equal sides but may not be a square.
(iii)  Arectangle has equal angles but may not be a square.
(iv) For a =3 and b = 4, the statement is not true.
(v) Forn=11, 2n* + 11 =253 which is not a prime.
(vi)For n =41, n*> —n +41 is not a prime.
2. Student’s own answer.
3. Let x and y be two odd numbers. Then x = 2m +1 for some natural number m and
y =2n+ 1 for some natural number 7.
x+y=2(m+n+1). Therefore, x + y is divisible by 2 and is even.
4. See Q3. xy=0C2m+1)2n+1)=22mn+m+n)+ 1.
Therefore, x y is not divisible by 2, and so it is odd.

5. Let 2n, 2n + 2 and 2n + 4 be three consecutive even numbers. Then their sum is
6(n + 1), which is divisible by 6.

7. (i) Letyour original number be n. Then we are doing the following operations:

n—2n—2n+9—-2n+ 9+n=3n+9—>3”3_+9=n+3—>n+3+4=n+7—>
nt+7—-n=17.
(i1) Note that 7 x 11 x 13 = 1001. Take any three digit number say, abc. Then

abc x 1001 = abcabc. Therefore, the six digit number abcabc is divisible by 7, 11
and 13.

EXERCISE A2.1

1. Step 1: Formulation :

The relevant factors are the time period for hiring a computer, and the two costs given to
us. We assume that there is no significant change in the cost of purchasing or hiring the
computer. So, we treat any such change as irrelevant. We also treat all brands and
generations of computers as the same, i.e. these differences are also irrelevant.

The expense of hiring the computer for x months is ¥ 2000x. If this becomes more than
the cost of purchasing a computer, we will be better off buying a computer. So, the
equation is

2000 x= 25000 (1)
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25000
2000

Step 3 : Interpretation : Since the cost of hiring a computer becomes more after 12.5
months, it is cheaper to buy a computer, if you have to use it for more than 12 months.

Step 2 : Solution : Solving (1), x = =125

. Stepl : Formulation : We will assume that cars travel at a constant speed. So, any

change of speed will be treated as irrelevant. If the cars meet after x hours, the first car
would have travelled a distance of 40x km from A and the second car would have travelled
30x km, so that it will be at a distance of (100 — 30x) km from A. So the equation will be
40x = 100 — 30x, i.e., 70x = 100.

Step 2 : Solution : Solving the equation, we get x = %.

Step 3 : Interpretation : %° is approximately 1.4 hours. So, the cars will meet after
Y p 20 pp y

1.4 hours.

. Stepl: Formulation : The speed at which the moon orbits the earth is

Length of the orbit
Time taken

Step 2 : Solution : Since the orbit is nearly circular, the length is 2 x T x 384000 km
= 2411520 km

The moon takes 24 hours to complete one orbit.

2811520 _ 400480 km/hour.

Step 3 : Interpretation : The speed is 100480 km/h.

So, speed =

. Formulation : An assumption is that the difference in the bill is only because of using

the water heater.

Let the average number of hours for which the water heater is used = x
Difference per month due to using water heater =< 1240 — X 1000 =< 240
Cost of using water heater for one hour = 8

So, the cost of using the water heater for 30 days =8 % 30 x x

Also, the cost of using the water heater for 30 days = Difference in bill due to using
water heater

So, 240x =240
Solution : From this equation, we get x = 1.
Interpretation : Since x = 1, the water heater is used for an average of 1 hour in a day.
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EXERCISE A2.2

1. We will not discuss any particular solution here. You can use the same method as we
used in last example, or any other method you think is suitable.

EXERCISE A2.3

1. We have already mentioned that the formulation part could be very detailed in real-life
situations. Also, we do not validate the answer in word problems. Apart from this word
problem have a ‘correct answer’. This need not be the case in real-life situations.

2. The important factors are (ii) and (iii). Here (i) is not an important factor although it can
have an effect on the number of vehicles sold.
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Class IX

Suggested Pedagogical Processes Learning Outcomes

The learners may be provided with
opportunities individually or in groups
and encouraged to—

e work with real numbers and consolidate
the concepts of numbers learnt in earlier
classes. Some such opportunities
could be:

= to observe and discuss real numbers.

» to recall and observe the processes
involved in different mathematical
concepts studied earlier and find
situations in which they come across
irrational numbers. For example,
finding the length of the diagonal of a
square with side, say, 2 units or area
of a circle with a given radius, etc.

= to observe the properties of different
types of numbers, such as, the
denseness of the numbers, by
devising different methods based on
the knowledge of numbers gained in
earlier classes. One of them could be
by representing them on the number
line.

» to facilitate in making mental
estimations in different situations,
such as, arranging numbers like 2,
212 23/2) 25/2 etc., in ascending (or
descending) order in a given time
frame or telling between which two
integers the numbers like, V17, V23,
V59, — V2, etc., lie.

e apply relevant results to factorise the
polynomials.

e draw and compare the graphs of linear
equations in one or two variables.

e discuss the proofs of mathematical
statements using axioms and
postulates.

e play the following games related to
geometry.
= For Euclid’s axioms, if one group

says, If equals are added to equals,

The learner—

* applies logical reasoning in classifying
real numbers, proving their properties
and using them in different situations.

¢ identifies/classifies polynomials
among algebraic expressions and
factorises them by applying appropriate
algebraic identities.

e relates the algebraic and graphical
representations of a linear equation in
one or two variables and applies the
concept to daily life situations.

¢ identifies similarities and differences
among different geometrical shapes.

o derives proofs of mathematical
statements particularly related to
geometrical concepts, like parallel
lines, triangles, quadrilaterals, circles,
etc., by applying axiomatic approach
and solves problems using them.

e finds areas of all types of triangles by
using appropriate formulae and apply
them in real life situations.

e constructs different geometrical
shapes like bisectors of line segments,
angles and triangles under given

Learning Outcomes at the Secondary Stage &7 |. =




then the results are equal. The other
group may be encouraged to provide
example such as, If a = b, then
a+ 3= b+ 3, another group may extend
it furtheras a+3 +5=b+ 3 + 5, and
SO on.

= By observing different objects in
the surroundings one group may
find the similarities and the other
group may find the differences with
reference to different geometrical
shapes— lines, rays, angles, parallel
lines, perpendicular lines, congruent
shapes, non-congruent shapes, etc.,
and justify their findings logically.
work with algebraic identities using
models and explore the use of algebraic
identities in familiar contexts.
discuss in groups about the properties
of triangles and construction of
geometrical shapes such as, triangles,
line segment and its bisector, angle and
its bisector under different conditions

find and discuss ways to fix position of a
point in a plane and different properties
related to it.

engage in a survey and discuss
about different ways to represent
data pictorially such as, bar graphs,
histograms (with varying base lengths)
and frequency polygons.

collect data from their surroundings
and calculate central tendencies such
as, mean, mode or median.

explore the features of solid objects
from daily life situations to identify
them as cubes, cuboids, cylinders, etc.

play games involving throwing a dice,
tossing a coin, etc., and find their
chance of happening.

do a project of collecting situations
corresponding to different numbers
representing probabilities.

visualise the concepts using Geogebra
and other ICT tools.

conditions and provides reasons for the
processes of such constructions.

develops strategies to locate points in
a Cartesian plane.

identifies and classifies the daily life
situations in which mean, median and
mode can be used.

analyses data by representing it in
different forms like, tabular form
(grouped or ungrouped), bar graph,
histogram (with equal and varying width
and length), and frequency polygon.

calculates empirical probability
through experiments and describes its
use in words.

derives formulae for surface areas and
volumes of different solid objects like,
cubes, cuboids, right circular cylinders/
cones, spheres and hemispheres and
applies them to objects found in the
surroundings.

solves problems that are not in the
familiar context of the child using
above learning. These problems should
include the situations to which the
child is not exposed earlier.

%< Learning Outcomes for Mathematics
1
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i :
FUNDAMENTAL DUTIES

Fundamental duties: It shall be the duty of every citizen of India-
(@) to abide by the Constitution and respect its ideals and institutions, the National Flag and the
National Anthem;

(b) to cherish and follow the noble ideals which inspired our national struggle for freedom;

(c) to uphold and protect the sovereignty, unity and integrity of India;

(d) to defend the country and render national service when called upon to do so;

(e) to promote harmony and the spirit of common brotherhood amongst all the people of India

transcending religious, linguistic and regional or sectional diversities; to renounce practices
derogatory to the dignity of women;
(f)  to value and preserve the rich heritage of our composite culture;
(g) to protect and improve the natural environment including forests, lakes, rivers and wild life,
and to have compassion for living creatures;
(h) to develop the scientific temper, humanism and the spirit of inquiry and reform;
(i) to safeguard public property and to abjure violence.
)  to strive towards excellence in all spheres of individual and collective activity so that the
nation constantly rises to higher levels of endeavour and achievement;
(k) who is a parent or guardian, to provide opportunities for education to his child or, as the case
may be ward between the age of six and fourteen years;
- Constitution of India,

Part IV A (Article 51 A
\_ ‘ )

/ Right of Children to Free and Compulsory Education (RTE) Act, 2009 \
The RTE Act provides for the right of children to free and Compulsory Education to every child
in the age group of 6 - 14 years which came into force from 1* April 2010 in Andhra Pradesh.
Important provisions of RTE Act
* Ensure availability of schools within the reach of the children.
¢ Improve School infrastructure facilities.
¢ Enroll children in the class appropriate to his / her age.
« Children have a right to receive special training in order to be at par with other children.
¢ Providing appropriate facilities for the education of children with special needs on par with other children.
¢ No child shall be liable to pay any kind of fee or charges or expenses which may prevent him or her from
pursuing and completing the elementary education. No test for admitting the children in schools.
* No removal of name and repetition of the child in the same class.
* No child admitted in a school shall be held back in any class or expel from school till the completion of
elementary education.
¢ No child shall be subjected to physical punishment or mental harassment.
¢ Admission shall not be denied or delayed on the ground that the transfer and other certificates have not been
provided on time.
« Eligible candidates alone shall be appointed as teachers.
» The teaching learning process and evaluation procedures shall promote achievement of appropriate
competencies.
¢ No board examinations shall be conducted to the children till the completion of elementary education.
¢ Children can continue in the schools even after 14 years until completion of elementary education.
¢ No discrimination and related practices towards children belonging to backward and marginalized
communities.
» The curriculum and evaluation procedures must be in conformity with the values enshrined in the constitution

and make the child free of fear and anxiety and help the child to express views freely. )
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